MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoselem Structured version   Visualization version   GIF version

Theorem isoselem 7316
Description: Lemma for isose 7318. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isoselem (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isoselem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 6071 . . . . . . . . 9 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
21biimpi 216 . . . . . . . 8 (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
32r19.21bi 3229 . . . . . . 7 ((𝑅 Se 𝐴𝑧𝐴) → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
43expcom 413 . . . . . 6 (𝑧𝐴 → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
54adantl 481 . . . . 5 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
6 imaeq2 6027 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → (𝐻𝑥) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))))
76eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝐻𝑥) ∈ V ↔ (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
87imbi2d 340 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝜑 → (𝐻𝑥) ∈ V) ↔ (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V)))
9 isofrlem.2 . . . . . . . . 9 (𝜑 → (𝐻𝑥) ∈ V)
108, 9vtoclg 3520 . . . . . . . 8 ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1110com12 32 . . . . . . 7 (𝜑 → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1211adantr 480 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
13 isofrlem.1 . . . . . . . 8 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
14 isoini 7313 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1513, 14sylan 580 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1615eleq1d 2813 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1712, 16sylibd 239 . . . . 5 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
185, 17syld 47 . . . 4 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1918ralrimdva 3133 . . 3 (𝜑 → (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
20 isof1o 7298 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
21 f1ofn 6801 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
22 sneq 4599 . . . . . . . . 9 (𝑦 = (𝐻𝑧) → {𝑦} = {(𝐻𝑧)})
2322imaeq2d 6031 . . . . . . . 8 (𝑦 = (𝐻𝑧) → (𝑆 “ {𝑦}) = (𝑆 “ {(𝐻𝑧)}))
2423ineq2d 4183 . . . . . . 7 (𝑦 = (𝐻𝑧) → (𝐵 ∩ (𝑆 “ {𝑦})) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
2524eleq1d 2813 . . . . . 6 (𝑦 = (𝐻𝑧) → ((𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2625ralrn 7060 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2713, 20, 21, 264syl 19 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
28 f1ofo 6807 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
29 forn 6775 . . . . . 6 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
3013, 20, 28, 294syl 19 . . . . 5 (𝜑 → ran 𝐻 = 𝐵)
3130raleqdv 3299 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3227, 31bitr3d 281 . . 3 (𝜑 → (∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3319, 32sylibd 239 . 2 (𝜑 → (𝑅 Se 𝐴 → ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
34 dfse2 6071 . 2 (𝑆 Se 𝐵 ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V)
3533, 34imbitrrdi 252 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cin 3913  {csn 4589   Se wse 5589  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-se 5592  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520
This theorem is referenced by:  isose  7318
  Copyright terms: Public domain W3C validator