Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sexp2 Structured version   Visualization version   GIF version

Theorem sexp2 33720
Description: Condition for the relationship in frxp2 33718 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
sexp2.1 (𝜑𝑅 Se 𝐴)
sexp2.2 (𝜑𝑆 Se 𝐵)
Assertion
Ref Expression
sexp2 (𝜑𝑇 Se (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem sexp2
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5604 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) ↔ ∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩)
2 xpord2.1 . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
32xpord2pred 33719 . . . . . . . 8 ((𝑎𝐴𝑏𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
43adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
5 sexp2.1 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
6 setlikespec 6217 . . . . . . . . . . . . 13 ((𝑎𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
76ancoms 458 . . . . . . . . . . . 12 ((𝑅 Se 𝐴𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
85, 7sylan 579 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
98adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
10 snex 5349 . . . . . . . . . . 11 {𝑎} ∈ V
1110a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑎} ∈ V)
129, 11unexd 7582 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V)
13 sexp2.2 . . . . . . . . . . . 12 (𝜑𝑆 Se 𝐵)
14 setlikespec 6217 . . . . . . . . . . . . 13 ((𝑏𝐵𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1514ancoms 458 . . . . . . . . . . . 12 ((𝑆 Se 𝐵𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1613, 15sylan 579 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1716adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
18 snex 5349 . . . . . . . . . . 11 {𝑏} ∈ V
1918a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑏} ∈ V)
2017, 19unexd 7582 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V)
2112, 20xpexd 7579 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V)
2221difexd 5248 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) ∈ V)
234, 22eqeltrd 2839 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V)
24 predeq3 6195 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) = Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩))
2524eleq1d 2823 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V ↔ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V))
2623, 25syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2726rexlimdvva 3222 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
281, 27syl5bi 241 . . 3 (𝜑 → (𝑝 ∈ (𝐴 × 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2928ralrimiv 3106 . 2 (𝜑 → ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
30 dfse3 33580 . 2 (𝑇 Se (𝐴 × 𝐵) ↔ ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
3129, 30sylibr 233 1 (𝜑𝑇 Se (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  {csn 4558  cop 4564   class class class wbr 5070  {copab 5132   Se wse 5533   × cxp 5578  Predcpred 6190  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-se 5536  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  xpord2ind  33721  on2recsfn  33753  on2recsov  33754  noxpordse  34036
  Copyright terms: Public domain W3C validator