Step | Hyp | Ref
| Expression |
1 | | elxp2 5604 |
. . . 4
⊢ (𝑝 ∈ (𝐴 × 𝐵) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑝 = 〈𝑎, 𝑏〉) |
2 | | xpord2.1 |
. . . . . . . . 9
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd
‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
3 | 2 | xpord2pred 33719 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 〈𝑎, 𝑏〉) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {〈𝑎, 𝑏〉})) |
4 | 3 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → Pred(𝑇, (𝐴 × 𝐵), 〈𝑎, 𝑏〉) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {〈𝑎, 𝑏〉})) |
5 | | sexp2.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 Se 𝐴) |
6 | | setlikespec 6217 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
7 | 6 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑅 Se 𝐴 ∧ 𝑎 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
8 | 5, 7 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
9 | 8 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
10 | | snex 5349 |
. . . . . . . . . . 11
⊢ {𝑎} ∈ V |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → {𝑎} ∈ V) |
12 | 9, 11 | unexd 7582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V) |
13 | | sexp2.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 Se 𝐵) |
14 | | setlikespec 6217 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
15 | 14 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑆 Se 𝐵 ∧ 𝑏 ∈ 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
16 | 13, 15 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
17 | 16 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
18 | | snex 5349 |
. . . . . . . . . . 11
⊢ {𝑏} ∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → {𝑏} ∈ V) |
20 | 17, 19 | unexd 7582 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V) |
21 | 12, 20 | xpexd 7579 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V) |
22 | 21 | difexd 5248 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {〈𝑎, 𝑏〉}) ∈ V) |
23 | 4, 22 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → Pred(𝑇, (𝐴 × 𝐵), 〈𝑎, 𝑏〉) ∈ V) |
24 | | predeq3 6195 |
. . . . . . 7
⊢ (𝑝 = 〈𝑎, 𝑏〉 → Pred(𝑇, (𝐴 × 𝐵), 𝑝) = Pred(𝑇, (𝐴 × 𝐵), 〈𝑎, 𝑏〉)) |
25 | 24 | eleq1d 2823 |
. . . . . 6
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V ↔ Pred(𝑇, (𝐴 × 𝐵), 〈𝑎, 𝑏〉) ∈ V)) |
26 | 23, 25 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑝 = 〈𝑎, 𝑏〉 → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)) |
27 | 26 | rexlimdvva 3222 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑝 = 〈𝑎, 𝑏〉 → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)) |
28 | 1, 27 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝑝 ∈ (𝐴 × 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)) |
29 | 28 | ralrimiv 3106 |
. 2
⊢ (𝜑 → ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V) |
30 | | dfse3 33580 |
. 2
⊢ (𝑇 Se (𝐴 × 𝐵) ↔ ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V) |
31 | 29, 30 | sylibr 233 |
1
⊢ (𝜑 → 𝑇 Se (𝐴 × 𝐵)) |