MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sexp2 Structured version   Visualization version   GIF version

Theorem sexp2 8150
Description: Condition for the relation in frxp2 8148 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
sexp2.1 (𝜑𝑅 Se 𝐴)
sexp2.2 (𝜑𝑆 Se 𝐵)
Assertion
Ref Expression
sexp2 (𝜑𝑇 Se (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem sexp2
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5683 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) ↔ ∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩)
2 xpord2.1 . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
32xpord2pred 8149 . . . . . . . 8 ((𝑎𝐴𝑏𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
43adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
5 sexp2.1 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
6 setlikespec 6319 . . . . . . . . . . . . 13 ((𝑎𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
76ancoms 458 . . . . . . . . . . . 12 ((𝑅 Se 𝐴𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
85, 7sylan 580 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
98adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
10 vsnex 5409 . . . . . . . . . . 11 {𝑎} ∈ V
1110a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑎} ∈ V)
129, 11unexd 7753 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V)
13 sexp2.2 . . . . . . . . . . . 12 (𝜑𝑆 Se 𝐵)
14 setlikespec 6319 . . . . . . . . . . . . 13 ((𝑏𝐵𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1514ancoms 458 . . . . . . . . . . . 12 ((𝑆 Se 𝐵𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1613, 15sylan 580 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1716adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
18 vsnex 5409 . . . . . . . . . . 11 {𝑏} ∈ V
1918a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑏} ∈ V)
2017, 19unexd 7753 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V)
2112, 20xpexd 7750 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V)
2221difexd 5306 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) ∈ V)
234, 22eqeltrd 2835 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V)
24 predeq3 6299 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) = Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩))
2524eleq1d 2820 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V ↔ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V))
2623, 25syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2726rexlimdvva 3202 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
281, 27biimtrid 242 . . 3 (𝜑 → (𝑝 ∈ (𝐴 × 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2928ralrimiv 3132 . 2 (𝜑 → ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
30 dfse3 6330 . 2 (𝑇 Se (𝐴 × 𝐵) ↔ ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
3129, 30sylibr 234 1 (𝜑𝑇 Se (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  {csn 4606  cop 4612   class class class wbr 5124  {copab 5186   Se wse 5609   × cxp 5657  Predcpred 6294  cfv 6536  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-se 5612  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by:  xpord2indlem  8151  on2recsfn  8684  on2recsov  8685  noxpordse  27916
  Copyright terms: Public domain W3C validator