MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sexp2 Structured version   Visualization version   GIF version

Theorem sexp2 8076
Description: Condition for the relation in frxp2 8074 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
sexp2.1 (𝜑𝑅 Se 𝐴)
sexp2.2 (𝜑𝑆 Se 𝐵)
Assertion
Ref Expression
sexp2 (𝜑𝑇 Se (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem sexp2
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5638 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) ↔ ∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩)
2 xpord2.1 . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
32xpord2pred 8075 . . . . . . . 8 ((𝑎𝐴𝑏𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
43adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
5 sexp2.1 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
6 setlikespec 6272 . . . . . . . . . . . . 13 ((𝑎𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
76ancoms 458 . . . . . . . . . . . 12 ((𝑅 Se 𝐴𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
85, 7sylan 580 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
98adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
10 vsnex 5370 . . . . . . . . . . 11 {𝑎} ∈ V
1110a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑎} ∈ V)
129, 11unexd 7687 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V)
13 sexp2.2 . . . . . . . . . . . 12 (𝜑𝑆 Se 𝐵)
14 setlikespec 6272 . . . . . . . . . . . . 13 ((𝑏𝐵𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1514ancoms 458 . . . . . . . . . . . 12 ((𝑆 Se 𝐵𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1613, 15sylan 580 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1716adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
18 vsnex 5370 . . . . . . . . . . 11 {𝑏} ∈ V
1918a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → {𝑏} ∈ V)
2017, 19unexd 7687 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V)
2112, 20xpexd 7684 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V)
2221difexd 5267 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) ∈ V)
234, 22eqeltrd 2831 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V)
24 predeq3 6252 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) = Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩))
2524eleq1d 2816 . . . . . 6 (𝑝 = ⟨𝑎, 𝑏⟩ → (Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V ↔ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ∈ V))
2623, 25syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2726rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑝 = ⟨𝑎, 𝑏⟩ → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
281, 27biimtrid 242 . . 3 (𝜑 → (𝑝 ∈ (𝐴 × 𝐵) → Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V))
2928ralrimiv 3123 . 2 (𝜑 → ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
30 dfse3 6283 . 2 (𝑇 Se (𝐴 × 𝐵) ↔ ∀𝑝 ∈ (𝐴 × 𝐵)Pred(𝑇, (𝐴 × 𝐵), 𝑝) ∈ V)
3129, 30sylibr 234 1 (𝜑𝑇 Se (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  {csn 4573  cop 4579   class class class wbr 5089  {copab 5151   Se wse 5565   × cxp 5612  Predcpred 6247  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-se 5568  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  xpord2indlem  8077  on2recsfn  8582  on2recsov  8583  noxpordse  27895
  Copyright terms: Public domain W3C validator