Step | Hyp | Ref
| Expression |
1 | | elxpxp 33683 |
. . . 4
⊢ (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉) |
2 | | df-3an 1088 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐶)) |
3 | | xpord3.1 |
. . . . . . . . . . . 12
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st
‘(1st ‘𝑥))𝑅(1st ‘(1st
‘𝑦)) ∨
(1st ‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑦))) ∧
((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st
‘𝑦)) ∨
(2nd ‘(1st ‘𝑥)) = (2nd ‘(1st
‘𝑦))) ∧
((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} |
4 | 3 | xpord3pred 33798 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉})) |
5 | 4 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉})) |
6 | | simpr1 1193 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑎 ∈ 𝐴) |
7 | | sexp3.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 Se 𝐴) |
8 | 7 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑅 Se 𝐴) |
9 | | setlikespec 6228 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑅, 𝐴, 𝑎) ∈ V) |
11 | | snex 5354 |
. . . . . . . . . . . . . . 15
⊢ {𝑎} ∈ V |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑎} ∈ V) |
13 | 10, 12 | unexd 7604 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V) |
14 | | simpr2 1194 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏 ∈ 𝐵) |
15 | | sexp3.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 Se 𝐵) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑆 Se 𝐵) |
17 | | setlikespec 6228 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
18 | 14, 16, 17 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑆, 𝐵, 𝑏) ∈ V) |
19 | | snex 5354 |
. . . . . . . . . . . . . . 15
⊢ {𝑏} ∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑏} ∈ V) |
21 | 18, 20 | unexd 7604 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V) |
22 | 13, 21 | xpexd 7601 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V) |
23 | | simpr3 1195 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 ∈ 𝐶) |
24 | | sexp3.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 Se 𝐶) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑇 Se 𝐶) |
26 | | setlikespec 6228 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐶 ∧ 𝑇 Se 𝐶) → Pred(𝑇, 𝐶, 𝑐) ∈ V) |
27 | 23, 25, 26 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑇, 𝐶, 𝑐) ∈ V) |
28 | | snex 5354 |
. . . . . . . . . . . . . 14
⊢ {𝑐} ∈ V |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑐} ∈ V) |
30 | 27, 29 | unexd 7604 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) ∈ V) |
31 | 22, 30 | xpexd 7601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∈ V) |
32 | 31 | difexd 5253 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈〈𝑎, 𝑏〉, 𝑐〉}) ∈ V) |
33 | 5, 32 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) ∈ V) |
34 | | predeq3 6206 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) = Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉)) |
35 | 34 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V ↔ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) ∈ V)) |
36 | 35 | biimprd 247 |
. . . . . . . . . 10
⊢ (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) ∈ V → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
37 | 36 | com12 32 |
. . . . . . . . 9
⊢
(Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈〈𝑎, 𝑏〉, 𝑐〉) ∈ V → (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
38 | 33, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
39 | 2, 38 | sylan2br 595 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐶)) → (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
40 | 39 | anassrs 468 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
41 | 40 | rexlimdva 3213 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∃𝑐 ∈ 𝐶 𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
42 | 41 | rexlimdvva 3223 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝑝 = 〈〈𝑎, 𝑏〉, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
43 | 1, 42 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) |
44 | 43 | ralrimiv 3102 |
. 2
⊢ (𝜑 → ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V) |
45 | | dfse3 6239 |
. 2
⊢ (𝑈 Se ((𝐴 × 𝐵) × 𝐶) ↔ ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V) |
46 | 44, 45 | sylibr 233 |
1
⊢ (𝜑 → 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) |