| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | el2xptp 8060 | . . . 4
⊢ (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝑝 = 〈𝑎, 𝑏, 𝑐〉) | 
| 2 |  | df-3an 1089 | . . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐶)) | 
| 3 |  | xpord3.1 | . . . . . . . . . . . 12
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st
‘(1st ‘𝑥))𝑅(1st ‘(1st
‘𝑦)) ∨
(1st ‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑦))) ∧
((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st
‘𝑦)) ∨
(2nd ‘(1st ‘𝑥)) = (2nd ‘(1st
‘𝑦))) ∧
((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} | 
| 4 | 3 | xpord3pred 8177 | . . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉})) | 
| 5 | 4 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉})) | 
| 6 |  | simpr1 1195 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑎 ∈ 𝐴) | 
| 7 |  | sexp3.1 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 Se 𝐴) | 
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑅 Se 𝐴) | 
| 9 |  | setlikespec 6346 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V) | 
| 10 | 6, 8, 9 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑅, 𝐴, 𝑎) ∈ V) | 
| 11 |  | vsnex 5434 | . . . . . . . . . . . . . . 15
⊢ {𝑎} ∈ V | 
| 12 | 11 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑎} ∈ V) | 
| 13 | 10, 12 | unexd 7774 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V) | 
| 14 |  | simpr2 1196 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏 ∈ 𝐵) | 
| 15 |  | sexp3.2 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 Se 𝐵) | 
| 16 | 15 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑆 Se 𝐵) | 
| 17 |  | setlikespec 6346 | . . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V) | 
| 18 | 14, 16, 17 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑆, 𝐵, 𝑏) ∈ V) | 
| 19 |  | vsnex 5434 | . . . . . . . . . . . . . . 15
⊢ {𝑏} ∈ V | 
| 20 | 19 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑏} ∈ V) | 
| 21 | 18, 20 | unexd 7774 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V) | 
| 22 | 13, 21 | xpexd 7771 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V) | 
| 23 |  | simpr3 1197 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 ∈ 𝐶) | 
| 24 |  | sexp3.3 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 Se 𝐶) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑇 Se 𝐶) | 
| 26 |  | setlikespec 6346 | . . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐶 ∧ 𝑇 Se 𝐶) → Pred(𝑇, 𝐶, 𝑐) ∈ V) | 
| 27 | 23, 25, 26 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑇, 𝐶, 𝑐) ∈ V) | 
| 28 |  | vsnex 5434 | . . . . . . . . . . . . . 14
⊢ {𝑐} ∈ V | 
| 29 | 28 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → {𝑐} ∈ V) | 
| 30 | 27, 29 | unexd 7774 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) ∈ V) | 
| 31 | 22, 30 | xpexd 7771 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∈ V) | 
| 32 | 31 | difexd 5331 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}) ∈ V) | 
| 33 | 5, 32 | eqeltrd 2841 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) ∈ V) | 
| 34 |  | predeq3 6325 | . . . . . . . . . 10
⊢ (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) = Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉)) | 
| 35 | 34 | eleq1d 2826 | . . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V ↔ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) ∈ V)) | 
| 36 | 33, 35 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 37 | 2, 36 | sylan2br 595 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐶)) → (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 38 | 37 | anassrs 467 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 39 | 38 | rexlimdva 3155 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∃𝑐 ∈ 𝐶 𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 40 | 39 | rexlimdvva 3213 | . . . 4
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝑝 = 〈𝑎, 𝑏, 𝑐〉 → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 41 | 1, 40 | biimtrid 242 | . . 3
⊢ (𝜑 → (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)) | 
| 42 | 41 | ralrimiv 3145 | . 2
⊢ (𝜑 → ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V) | 
| 43 |  | dfse3 6357 | . 2
⊢ (𝑈 Se ((𝐴 × 𝐵) × 𝐶) ↔ ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V) | 
| 44 | 42, 43 | sylibr 234 | 1
⊢ (𝜑 → 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) |