Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sexp3 Structured version   Visualization version   GIF version

Theorem sexp3 33799
Description: Show that the triple order is set-like. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypotheses
Ref Expression
xpord3.1 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
sexp3.1 (𝜑𝑅 Se 𝐴)
sexp3.2 (𝜑𝑆 Se 𝐵)
sexp3.3 (𝜑𝑇 Se 𝐶)
Assertion
Ref Expression
sexp3 (𝜑𝑈 Se ((𝐴 × 𝐵) × 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)

Proof of Theorem sexp3
Dummy variables 𝑎 𝑏 𝑐 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpxp 33683 . . . 4 (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩)
2 df-3an 1088 . . . . . . . 8 ((𝑎𝐴𝑏𝐵𝑐𝐶) ↔ ((𝑎𝐴𝑏𝐵) ∧ 𝑐𝐶))
3 xpord3.1 . . . . . . . . . . . 12 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
43xpord3pred 33798 . . . . . . . . . . 11 ((𝑎𝐴𝑏𝐵𝑐𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}))
54adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}))
6 simpr1 1193 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑎𝐴)
7 sexp3.1 . . . . . . . . . . . . . . . 16 (𝜑𝑅 Se 𝐴)
87adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑅 Se 𝐴)
9 setlikespec 6228 . . . . . . . . . . . . . . 15 ((𝑎𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
106, 8, 9syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → Pred(𝑅, 𝐴, 𝑎) ∈ V)
11 snex 5354 . . . . . . . . . . . . . . 15 {𝑎} ∈ V
1211a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → {𝑎} ∈ V)
1310, 12unexd 7604 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∈ V)
14 simpr2 1194 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑏𝐵)
15 sexp3.2 . . . . . . . . . . . . . . . 16 (𝜑𝑆 Se 𝐵)
1615adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑆 Se 𝐵)
17 setlikespec 6228 . . . . . . . . . . . . . . 15 ((𝑏𝐵𝑆 Se 𝐵) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
1814, 16, 17syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → Pred(𝑆, 𝐵, 𝑏) ∈ V)
19 snex 5354 . . . . . . . . . . . . . . 15 {𝑏} ∈ V
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → {𝑏} ∈ V)
2118, 20unexd 7604 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∈ V)
2213, 21xpexd 7601 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∈ V)
23 simpr3 1195 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑐𝐶)
24 sexp3.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 Se 𝐶)
2524adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → 𝑇 Se 𝐶)
26 setlikespec 6228 . . . . . . . . . . . . . 14 ((𝑐𝐶𝑇 Se 𝐶) → Pred(𝑇, 𝐶, 𝑐) ∈ V)
2723, 25, 26syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → Pred(𝑇, 𝐶, 𝑐) ∈ V)
28 snex 5354 . . . . . . . . . . . . . 14 {𝑐} ∈ V
2928a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → {𝑐} ∈ V)
3027, 29unexd 7604 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) ∈ V)
3122, 30xpexd 7601 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∈ V)
3231difexd 5253 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {⟨⟨𝑎, 𝑏⟩, 𝑐⟩}) ∈ V)
335, 32eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ∈ V)
34 predeq3 6206 . . . . . . . . . . . 12 (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) = Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩))
3534eleq1d 2823 . . . . . . . . . . 11 (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V ↔ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ∈ V))
3635biimprd 247 . . . . . . . . . 10 (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ∈ V → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
3736com12 32 . . . . . . . . 9 (Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨⟨𝑎, 𝑏⟩, 𝑐⟩) ∈ V → (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
3833, 37syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
392, 38sylan2br 595 . . . . . . 7 ((𝜑 ∧ ((𝑎𝐴𝑏𝐵) ∧ 𝑐𝐶)) → (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
4039anassrs 468 . . . . . 6 (((𝜑 ∧ (𝑎𝐴𝑏𝐵)) ∧ 𝑐𝐶) → (𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
4140rexlimdva 3213 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (∃𝑐𝐶 𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
4241rexlimdvva 3223 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨⟨𝑎, 𝑏⟩, 𝑐⟩ → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
431, 42syl5bi 241 . . 3 (𝜑 → (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V))
4443ralrimiv 3102 . 2 (𝜑 → ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)
45 dfse3 6239 . 2 (𝑈 Se ((𝐴 × 𝐵) × 𝐶) ↔ ∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 𝑝) ∈ V)
4644, 45sylibr 233 1 (𝜑𝑈 Se ((𝐴 × 𝐵) × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  {csn 4561  cop 4567   class class class wbr 5074  {copab 5136   Se wse 5542   × cxp 5587  Predcpred 6201  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-se 5545  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  xpord3ind  33800
  Copyright terms: Public domain W3C validator