Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   GIF version

Theorem sxbrsigalem2 33584
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽   𝑒,𝑓,𝑛,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑣,𝑢,𝑒,𝑓)   𝐼(𝑒,𝑓,𝑛)   𝐽(𝑣,𝑢,𝑒,𝑓,𝑛)

Proof of Theorem sxbrsigalem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 33582 . . 3 ran 𝑅 = (ℝ × ℝ)
5 sxbrsigalem0 33569 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
64, 5eqtr4i 2762 . 2 ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
7 vex 3477 . . . . . 6 𝑢 ∈ V
8 vex 3477 . . . . . 6 𝑣 ∈ V
97, 8xpex 7744 . . . . 5 (𝑢 × 𝑣) ∈ V
103, 9elrnmpo 7548 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
11 simpr 484 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
121, 2dya2icobrsiga 33574 . . . . . . . . . . . . 13 ran 𝐼 ⊆ 𝔅
13 brsigasspwrn 33482 . . . . . . . . . . . . 13 𝔅 ⊆ 𝒫 ℝ
1412, 13sstri 3991 . . . . . . . . . . . 12 ran 𝐼 ⊆ 𝒫 ℝ
1514sseli 3978 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
1615elpwid 4611 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
1714sseli 3978 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
1817elpwid 4611 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
19 xpinpreima2 33186 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
2016, 18, 19syl2an 595 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
21 reex 11205 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
2221mptex 7227 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2322rnex 7907 . . . . . . . . . . . . . . 15 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2421mptex 7227 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2524rnex 7907 . . . . . . . . . . . . . . 15 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2623, 25unex 7737 . . . . . . . . . . . . . 14 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V
2726a1i 11 . . . . . . . . . . . . 13 (⊤ → (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V)
2827sgsiga 33439 . . . . . . . . . . . 12 (⊤ → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
2928mptru 1547 . . . . . . . . . . 11 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra
3029a1i 11 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
31 1stpreima 32196 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
3216, 31syl 17 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
33 ovex 7445 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
342, 33elrnmpo 7548 . . . . . . . . . . . . 13 (𝑢 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
35 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3635xpeq1d 5705 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
37 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
3837zred 12671 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
39 2rp 12984 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
41 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
4240, 41rpexpcld 14215 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
4338, 42rerpdivcld 13052 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
4443rexrd 11269 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
45 1red 11220 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
4638, 45readdcld 11248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
4746, 42rerpdivcld 13052 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
4847rexrd 11269 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
49 pnfxr 11273 . . . . . . . . . . . . . . . . . . . . . 22 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → +∞ ∈ ℝ*)
5138lep1d 12150 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ≤ (𝑥 + 1))
5238, 46, 42, 51lediv1dd 13079 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)))
53 pnfge 13115 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
5448, 53syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
55 difico 32262 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)) ∧ ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5644, 48, 50, 52, 54, 55syl32anc 1377 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5756xpeq1d 5705 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
58 difxp1 6164 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
5957, 58eqtr3di 2786 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
6029a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
61 ssun1 4172 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
62 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)
63 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = (𝑥 / (2↑𝑛)) → (𝑒[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
6463xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥 / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ))
6564rspceeqv 3633 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
6643, 62, 65sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
67 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
68 ovex 7445 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒[,)+∞) ∈ V
6968, 21xpex 7744 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒[,)+∞) × ℝ) ∈ V
7067, 69elrnmpti 5959 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7166, 70sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
7261, 71sselid 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
73 elsigagen 33444 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
7426, 72, 73sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
75 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)
76 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (𝑒[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
7776xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
7877rspceeqv 3633 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7947, 75, 78sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8067, 69elrnmpti 5959 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8179, 80sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
8261, 81sselid 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
83 elsigagen 33444 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8426, 82, 83sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
85 difelsiga 33430 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8660, 74, 84, 85syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8759, 86eqeltrd 2832 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8887adantr 480 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8936, 88eqeltrd 2832 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9089ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
9190rexlimivv 3198 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9234, 91sylbi 216 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9332, 92eqeltrd 2832 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9493adantr 480 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
95 2ndpreima 32197 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
9618, 95syl 17 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
972, 33elrnmpo 7548 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
98 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
9998xpeq2d 5706 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
10056xpeq2d 5706 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
101 difxp2 6165 . . . . . . . . . . . . . . . . . . 19 (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
102100, 101eqtr3di 2786 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
103 ssun2 4173 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
104 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))
105 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑥 / (2↑𝑛)) → (𝑓[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
106105xpeq2d 5706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑥 / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)))
107106rspceeqv 3633 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
10843, 104, 107sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
109 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
110 ovex 7445 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓[,)+∞) ∈ V
11121, 110xpex 7744 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (𝑓[,)+∞)) ∈ V
112109, 111elrnmpti 5959 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
113108, 112sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
114103, 113sselid 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
115 elsigagen 33444 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
11626, 114, 115sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
117 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))
118 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (𝑓[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
119118xpeq2d 5706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
120119rspceeqv 3633 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
12147, 117, 120sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
122109, 111elrnmpti 5959 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
123121, 122sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
124103, 123sselid 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
125 elsigagen 33444 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
12626, 124, 125sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
127 difelsiga 33430 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
12860, 116, 126, 127syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
129102, 128eqeltrd 2832 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
130129adantr 480 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13199, 130eqeltrd 2832 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
132131ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
133132rexlimivv 3198 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13497, 133sylbi 216 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13596, 134eqeltrd 2832 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
136135adantl 481 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
137 inelsiga 33432 . . . . . . . . . 10 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13830, 94, 136, 137syl3anc 1370 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13920, 138eqeltrd 2832 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
140139adantr 480 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14111, 140eqeltrd 2832 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
142141ex 412 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
143142rexlimivv 3198 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14410, 143sylbi 216 . . 3 (𝑑 ∈ ran 𝑅𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
145144ssriv 3986 . 2 ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
146 sigagenss2 33447 . 2 (( ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∧ ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
1476, 145, 26, 146mp3an 1460 1 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2105  wrex 3069  Vcvv 3473  cdif 3945  cun 3946  cin 3947  wss 3948  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  ran crn 5677  cres 5678  cima 5679  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978  cr 11113  1c1 11115   + caddc 11117  +∞cpnf 11250  *cxr 11252  cle 11254   / cdiv 11876  2c2 12272  cz 12563  +crp 12979  (,)cioo 13329  [,)cico 13331  cexp 14032  topGenctg 17388  sigAlgebracsiga 33405  sigaGencsigagen 33435  𝔅cbrsiga 33478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-ac2 10462  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-acn 9941  df-ac 10115  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-ef 16016  df-sin 16018  df-cos 16019  df-pi 16021  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-refld 21378  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-fcls 23666  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-cfil 25004  df-cmet 25006  df-cms 25084  df-limc 25616  df-dv 25617  df-log 26302  df-cxp 26303  df-logb 26507  df-siga 33406  df-sigagen 33436  df-brsiga 33479
This theorem is referenced by:  sxbrsigalem4  33585
  Copyright terms: Public domain W3C validator