Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   GIF version

Theorem sxbrsigalem2 31654
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽   𝑒,𝑓,𝑛,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑣,𝑢,𝑒,𝑓)   𝐼(𝑒,𝑓,𝑛)   𝐽(𝑣,𝑢,𝑒,𝑓,𝑛)

Proof of Theorem sxbrsigalem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 31652 . . 3 ran 𝑅 = (ℝ × ℝ)
5 sxbrsigalem0 31639 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
64, 5eqtr4i 2824 . 2 ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
7 vex 3444 . . . . . 6 𝑢 ∈ V
8 vex 3444 . . . . . 6 𝑣 ∈ V
97, 8xpex 7456 . . . . 5 (𝑢 × 𝑣) ∈ V
103, 9elrnmpo 7266 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
11 simpr 488 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
121, 2dya2icobrsiga 31644 . . . . . . . . . . . . 13 ran 𝐼 ⊆ 𝔅
13 brsigasspwrn 31554 . . . . . . . . . . . . 13 𝔅 ⊆ 𝒫 ℝ
1412, 13sstri 3924 . . . . . . . . . . . 12 ran 𝐼 ⊆ 𝒫 ℝ
1514sseli 3911 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
1615elpwid 4508 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
1714sseli 3911 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
1817elpwid 4508 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
19 xpinpreima2 31260 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
2016, 18, 19syl2an 598 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
21 reex 10617 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
2221mptex 6963 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2322rnex 7599 . . . . . . . . . . . . . . 15 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2421mptex 6963 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2524rnex 7599 . . . . . . . . . . . . . . 15 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2623, 25unex 7449 . . . . . . . . . . . . . 14 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V
2726a1i 11 . . . . . . . . . . . . 13 (⊤ → (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V)
2827sgsiga 31511 . . . . . . . . . . . 12 (⊤ → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
2928mptru 1545 . . . . . . . . . . 11 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra
3029a1i 11 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
31 1stpreima 30466 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
3216, 31syl 17 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
33 ovex 7168 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
342, 33elrnmpo 7266 . . . . . . . . . . . . 13 (𝑢 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
35 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3635xpeq1d 5548 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
37 difxp1 5989 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
38 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
3938zred 12075 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
40 2rp 12382 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
42 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
4341, 42rpexpcld 13604 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
4439, 43rerpdivcld 12450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
4544rexrd 10680 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
46 1red 10631 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
4739, 46readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
4847, 43rerpdivcld 12450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
4948rexrd 10680 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
50 pnfxr 10684 . . . . . . . . . . . . . . . . . . . . . 22 +∞ ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → +∞ ∈ ℝ*)
5239lep1d 11560 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ≤ (𝑥 + 1))
5339, 47, 43, 52lediv1dd 12477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)))
54 pnfge 12513 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
56 difico 30532 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)) ∧ ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5745, 49, 51, 53, 55, 56syl32anc 1375 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5857xpeq1d 5548 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
5937, 58syl5reqr 2848 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
6029a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
61 ssun1 4099 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
62 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)
63 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = (𝑥 / (2↑𝑛)) → (𝑒[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
6463xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥 / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ))
6564rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
6644, 62, 65sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
67 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
68 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒[,)+∞) ∈ V
6968, 21xpex 7456 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒[,)+∞) × ℝ) ∈ V
7067, 69elrnmpti 5796 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7166, 70sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
7261, 71sseldi 3913 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
73 elsigagen 31516 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
7426, 72, 73sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
75 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)
76 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (𝑒[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
7776xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
7877rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7948, 75, 78sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8067, 69elrnmpti 5796 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8179, 80sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
8261, 81sseldi 3913 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
83 elsigagen 31516 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8426, 82, 83sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
85 difelsiga 31502 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8660, 74, 84, 85syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8759, 86eqeltrd 2890 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8887adantr 484 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8936, 88eqeltrd 2890 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9089ex 416 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
9190rexlimivv 3251 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9234, 91sylbi 220 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9332, 92eqeltrd 2890 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9493adantr 484 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
95 2ndpreima 30467 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
9618, 95syl 17 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
972, 33elrnmpo 7266 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
98 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
9998xpeq2d 5549 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
100 difxp2 5990 . . . . . . . . . . . . . . . . . . 19 (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
10157xpeq2d 5549 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
102100, 101syl5reqr 2848 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
103 ssun2 4100 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
104 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))
105 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑥 / (2↑𝑛)) → (𝑓[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
106105xpeq2d 5549 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑥 / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)))
107106rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
10844, 104, 107sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
109 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
110 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓[,)+∞) ∈ V
11121, 110xpex 7456 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (𝑓[,)+∞)) ∈ V
112109, 111elrnmpti 5796 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
113108, 112sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
114103, 113sseldi 3913 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
115 elsigagen 31516 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
11626, 114, 115sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
117 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))
118 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (𝑓[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
119118xpeq2d 5549 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
120119rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
12148, 117, 120sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
122109, 111elrnmpti 5796 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
123121, 122sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
124103, 123sseldi 3913 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
125 elsigagen 31516 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
12626, 124, 125sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
127 difelsiga 31502 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
12860, 116, 126, 127syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
129102, 128eqeltrd 2890 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
130129adantr 484 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13199, 130eqeltrd 2890 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
132131ex 416 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
133132rexlimivv 3251 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13497, 133sylbi 220 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13596, 134eqeltrd 2890 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
136135adantl 485 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
137 inelsiga 31504 . . . . . . . . . 10 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13830, 94, 136, 137syl3anc 1368 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13920, 138eqeltrd 2890 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
140139adantr 484 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14111, 140eqeltrd 2890 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
142141ex 416 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
143142rexlimivv 3251 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14410, 143sylbi 220 . . 3 (𝑑 ∈ ran 𝑅𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
145144ssriv 3919 . 2 ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
146 sigagenss2 31519 . 2 (( ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∧ ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
1476, 145, 26, 146mp3an 1458 1 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2111  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  cr 10525  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663  cle 10665   / cdiv 11286  2c2 11680  cz 11969  +crp 12377  (,)cioo 12726  [,)cico 12728  cexp 13425  topGenctg 16703  sigAlgebracsiga 31477  sigaGencsigagen 31507  𝔅cbrsiga 31550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-refld 20294  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-fcls 22546  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-cfil 23859  df-cmet 23861  df-cms 23939  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-logb 25351  df-siga 31478  df-sigagen 31508  df-brsiga 31551
This theorem is referenced by:  sxbrsigalem4  31655
  Copyright terms: Public domain W3C validator