Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTVinidres Structured version   Visualization version   GIF version

Theorem disjALTVinidres 38298
Description: The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
disjALTVinidres Disj (𝑅 ∩ ( I ↾ 𝐴))

Proof of Theorem disjALTVinidres
StepHypRef Expression
1 disjALTVid 38296 . 2 Disj I
2 disjiminres 38293 . 2 ( Disj I → Disj (𝑅 ∩ ( I ↾ 𝐴)))
31, 2ax-mp 5 1 Disj (𝑅 ∩ ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  cin 3944   I cid 5574  cres 5679   Disj wdisjALTV 37752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-coss 37952  df-cnvrefrel 38068  df-funALTV 38223  df-disjALTV 38246
This theorem is referenced by:  eqvrel1cossinidres  38332  detinidres  38337  petinidres2  38361
  Copyright terms: Public domain W3C validator