![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVxrnidres | Structured version Visualization version GIF version |
Description: The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTVxrnidres | ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVid 38749 | . 2 ⊢ Disj I | |
2 | disjimxrnres 38747 | . 2 ⊢ ( Disj I → Disj (𝑅 ⋉ ( I ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: I cid 5583 ↾ cres 5692 ⋉ cxrn 38173 Disj wdisjALTV 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-fo 6572 df-fv 6574 df-1st 8019 df-2nd 8020 df-ec 8752 df-xrn 38365 df-coss 38405 df-cnvrefrel 38521 df-funALTV 38676 df-disjALTV 38699 |
This theorem is referenced by: eqvrel1cossxrnidres 38786 detxrnidres 38791 petxrnidres2 38816 |
Copyright terms: Public domain | W3C validator |