![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVxrnidres | Structured version Visualization version GIF version |
Description: The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTVxrnidres | ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVid 38713 | . 2 ⊢ Disj I | |
2 | disjimxrnres 38711 | . 2 ⊢ ( Disj I → Disj (𝑅 ⋉ ( I ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: I cid 5592 ↾ cres 5702 ⋉ cxrn 38136 Disj wdisjALTV 38171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fo 6581 df-fv 6583 df-1st 8032 df-2nd 8033 df-ec 8767 df-xrn 38329 df-coss 38369 df-cnvrefrel 38485 df-funALTV 38640 df-disjALTV 38663 |
This theorem is referenced by: eqvrel1cossxrnidres 38750 detxrnidres 38755 petxrnidres2 38780 |
Copyright terms: Public domain | W3C validator |