Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTVxrnidres Structured version   Visualization version   GIF version

Theorem disjALTVxrnidres 36992
Description: The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
disjALTVxrnidres Disj (𝑅 ⋉ ( I ↾ 𝐴))

Proof of Theorem disjALTVxrnidres
StepHypRef Expression
1 disjALTVid 36989 . 2 Disj I
2 disjimxrnres 36987 . 2 ( Disj I → Disj (𝑅 ⋉ ( I ↾ 𝐴)))
31, 2ax-mp 5 1 Disj (𝑅 ⋉ ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   I cid 5506  cres 5610  cxrn 36404   Disj wdisjALTV 36439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-fo 6472  df-fv 6474  df-1st 7878  df-2nd 7879  df-ec 8550  df-xrn 36605  df-coss 36645  df-cnvrefrel 36761  df-funALTV 36916  df-disjALTV 36939
This theorem is referenced by:  eqvrel1cossxrnidres  37026  detxrnidres  37031  petxrnidres2  37056
  Copyright terms: Public domain W3C validator