![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVxrnidres | Structured version Visualization version GIF version |
Description: The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTVxrnidres | ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVid 38296 | . 2 ⊢ Disj I | |
2 | disjimxrnres 38294 | . 2 ⊢ ( Disj I → Disj (𝑅 ⋉ ( I ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: I cid 5574 ↾ cres 5679 ⋉ cxrn 37717 Disj wdisjALTV 37752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fo 6553 df-fv 6555 df-1st 7992 df-2nd 7993 df-ec 8725 df-xrn 37912 df-coss 37952 df-cnvrefrel 38068 df-funALTV 38223 df-disjALTV 38246 |
This theorem is referenced by: eqvrel1cossxrnidres 38333 detxrnidres 38338 petxrnidres2 38363 |
Copyright terms: Public domain | W3C validator |