Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVxrnidres | Structured version Visualization version GIF version |
Description: The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjALTVxrnidres | ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVid 36989 | . 2 ⊢ Disj I | |
2 | disjimxrnres 36987 | . 2 ⊢ ( Disj I → Disj (𝑅 ⋉ ( I ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: I cid 5506 ↾ cres 5610 ⋉ cxrn 36404 Disj wdisjALTV 36439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-fo 6472 df-fv 6474 df-1st 7878 df-2nd 7879 df-ec 8550 df-xrn 36605 df-coss 36645 df-cnvrefrel 36761 df-funALTV 36916 df-disjALTV 36939 |
This theorem is referenced by: eqvrel1cossxrnidres 37026 detxrnidres 37031 petxrnidres2 37056 |
Copyright terms: Public domain | W3C validator |