Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  detinidres Structured version   Visualization version   GIF version

Theorem detinidres 38781
Description: The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
detinidres ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)))

Proof of Theorem detinidres
StepHypRef Expression
1 disjALTVinidres 38742 . 2 Disj (𝑅 ∩ ( I ↾ 𝐴))
21detlem 38768 1 ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  cin 3910   I cid 5525  cres 5633  ccoss 38162   EqvRel weqvrel 38179   Disj wdisjALTV 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coss 38395  df-refrel 38496  df-cnvrefrel 38511  df-symrel 38528  df-trrel 38558  df-eqvrel 38569  df-funALTV 38667  df-disjALTV 38690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator