![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > detinidres | Structured version Visualization version GIF version |
Description: The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
detinidres | ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVinidres 38751 | . 2 ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | |
2 | 1 | detlem 38777 | 1 ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∩ cin 3963 I cid 5583 ↾ cres 5692 ≀ ccoss 38174 EqvRel weqvrel 38191 Disj wdisjALTV 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-coss 38405 df-refrel 38506 df-cnvrefrel 38521 df-symrel 38538 df-trrel 38568 df-eqvrel 38579 df-funALTV 38676 df-disjALTV 38699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |