Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  detinidres Structured version   Visualization version   GIF version

Theorem detinidres 38324
Description: The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
detinidres ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)))

Proof of Theorem detinidres
StepHypRef Expression
1 disjALTVinidres 38285 . 2 Disj (𝑅 ∩ ( I ↾ 𝐴))
21detlem 38311 1 ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  cin 3938   I cid 5569  cres 5674  ccoss 37705   EqvRel weqvrel 37722   Disj wdisjALTV 37739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-coss 37939  df-refrel 38040  df-cnvrefrel 38055  df-symrel 38072  df-trrel 38102  df-eqvrel 38113  df-funALTV 38210  df-disjALTV 38233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator