Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > detinidres | Structured version Visualization version GIF version |
Description: The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
detinidres | ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVinidres 36971 | . 2 ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | |
2 | 1 | detlem 36997 | 1 ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∩ cin 3891 I cid 5499 ↾ cres 5602 ≀ ccoss 36381 EqvRel weqvrel 36398 Disj wdisjALTV 36415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-coss 36625 df-refrel 36726 df-cnvrefrel 36741 df-symrel 36758 df-trrel 36788 df-eqvrel 36799 df-funALTV 36896 df-disjALTV 36919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |