| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > detinidres | Structured version Visualization version GIF version | ||
| Description: The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| detinidres | ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTVinidres 38699 | . 2 ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | |
| 2 | 1 | detlem 38725 | 1 ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∩ cin 3932 I cid 5559 ↾ cres 5669 ≀ ccoss 38123 EqvRel weqvrel 38140 Disj wdisjALTV 38157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-coss 38353 df-refrel 38454 df-cnvrefrel 38469 df-symrel 38486 df-trrel 38516 df-eqvrel 38527 df-funALTV 38624 df-disjALTV 38647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |