Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeqi Structured version   Visualization version   GIF version

Theorem disjeqi 38211
Description: Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.)
Hypothesis
Ref Expression
disjeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
disjeqi ( Disj 𝐴 ↔ Disj 𝐵)

Proof of Theorem disjeqi
StepHypRef Expression
1 disjeqi.1 . 2 𝐴 = 𝐵
2 disjeq 38210 . 2 (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
31, 2ax-mp 5 1 ( Disj 𝐴 ↔ Disj 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533   Disj wdisjALTV 37687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-coss 37887  df-cnvrefrel 38003  df-funALTV 38158  df-disjALTV 38181
This theorem is referenced by:  disjxrnres5  38223  disjsuc  38235
  Copyright terms: Public domain W3C validator