Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeqi Structured version   Visualization version   GIF version

Theorem disjeqi 37410
Description: Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.)
Hypothesis
Ref Expression
disjeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
disjeqi ( Disj 𝐴 ↔ Disj 𝐵)

Proof of Theorem disjeqi
StepHypRef Expression
1 disjeqi.1 . 2 𝐴 = 𝐵
2 disjeq 37409 . 2 (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
31, 2ax-mp 5 1 ( Disj 𝐴 ↔ Disj 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541   Disj wdisjALTV 36882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-coss 37086  df-cnvrefrel 37202  df-funALTV 37357  df-disjALTV 37380
This theorem is referenced by:  disjxrnres5  37422  disjsuc  37434
  Copyright terms: Public domain W3C validator