![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeqi | Structured version Visualization version GIF version |
Description: Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
disjeqi | ⊢ ( Disj 𝐴 ↔ Disj 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | disjeq 38210 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( Disj 𝐴 ↔ Disj 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 Disj wdisjALTV 37687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-coss 37887 df-cnvrefrel 38003 df-funALTV 38158 df-disjALTV 38181 |
This theorem is referenced by: disjxrnres5 38223 disjsuc 38235 |
Copyright terms: Public domain | W3C validator |