Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeqi Structured version   Visualization version   GIF version

Theorem disjeqi 36949
Description: Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.)
Hypothesis
Ref Expression
disjeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
disjeqi ( Disj 𝐴 ↔ Disj 𝐵)

Proof of Theorem disjeqi
StepHypRef Expression
1 disjeqi.1 . 2 𝐴 = 𝐵
2 disjeq 36948 . 2 (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
31, 2ax-mp 5 1 ( Disj 𝐴 ↔ Disj 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539   Disj wdisjALTV 36415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-coss 36625  df-cnvrefrel 36741  df-funALTV 36896  df-disjALTV 36919
This theorem is referenced by:  disjxrnres5  36961  disjsuc  36973
  Copyright terms: Public domain W3C validator