![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeqi | Structured version Visualization version GIF version |
Description: Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
disjeqi | ⊢ ( Disj 𝐴 ↔ Disj 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | disjeq 38639 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( Disj 𝐴 ↔ Disj 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Disj wdisjALTV 38118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-coss 38316 df-cnvrefrel 38432 df-funALTV 38587 df-disjALTV 38610 |
This theorem is referenced by: disjxrnres5 38652 disjsuc 38664 |
Copyright terms: Public domain | W3C validator |