![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeq | Structured version Visualization version GIF version |
Description: Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
disjeq | ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3945 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | 1 | disjssd 35516 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 → Disj 𝐵)) |
3 | eqimss 3944 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
4 | 3 | disjssd 35516 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj 𝐵 → Disj 𝐴)) |
5 | 2, 4 | impbid 213 | 1 ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 Disj wdisjALTV 35038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-coss 35209 df-cnvrefrel 35315 df-funALTV 35465 df-disjALTV 35488 |
This theorem is referenced by: disjeqi 35518 disjeqd 35519 disjdmqseqeq1 35520 |
Copyright terms: Public domain | W3C validator |