Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeq Structured version   Visualization version   GIF version

Theorem disjeq 36772
Description: Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjeq (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))

Proof of Theorem disjeq
StepHypRef Expression
1 eqimss2 3974 . . 3 (𝐴 = 𝐵𝐵𝐴)
21disjssd 36771 . 2 (𝐴 = 𝐵 → ( Disj 𝐴 → Disj 𝐵))
3 eqimss 3973 . . 3 (𝐴 = 𝐵𝐴𝐵)
43disjssd 36771 . 2 (𝐴 = 𝐵 → ( Disj 𝐵 → Disj 𝐴))
52, 4impbid 211 1 (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539   Disj wdisjALTV 36294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-cnvrefrel 36570  df-funALTV 36720  df-disjALTV 36743
This theorem is referenced by:  disjeqi  36773  disjeqd  36774  disjdmqseqeq1  36775
  Copyright terms: Public domain W3C validator