Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeq Structured version   Visualization version   GIF version

Theorem disjeq 38726
Description: Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
disjeq (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))

Proof of Theorem disjeq
StepHypRef Expression
1 eqimss2 4006 . . 3 (𝐴 = 𝐵𝐵𝐴)
21disjssd 38725 . 2 (𝐴 = 𝐵 → ( Disj 𝐴 → Disj 𝐵))
3 eqimss 4005 . . 3 (𝐴 = 𝐵𝐴𝐵)
43disjssd 38725 . 2 (𝐴 = 𝐵 → ( Disj 𝐵 → Disj 𝐴))
52, 4impbid 212 1 (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-coss 38402  df-cnvrefrel 38518  df-funALTV 38674  df-disjALTV 38697
This theorem is referenced by:  disjeqi  38727  disjeqd  38728  disjdmqseqeq1  38729
  Copyright terms: Public domain W3C validator