Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscacbv Structured version   Visualization version   GIF version

Theorem dvhvscacbv 41116
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
Assertion
Ref Expression
dvhvscacbv · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑔,𝐸   𝑇,𝑠,𝑓,𝑡,𝑔
Allowed substitution hints:   · (𝑡,𝑓,𝑔,𝑠)

Proof of Theorem dvhvscacbv
StepHypRef Expression
1 dvhvscaval.s . 2 · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
2 fveq1 6816 . . . 4 (𝑠 = 𝑡 → (𝑠‘(1st𝑓)) = (𝑡‘(1st𝑓)))
3 coeq1 5795 . . . 4 (𝑠 = 𝑡 → (𝑠 ∘ (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
42, 3opeq12d 4831 . . 3 (𝑠 = 𝑡 → ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩ = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
5 2fveq3 6822 . . . 4 (𝑓 = 𝑔 → (𝑡‘(1st𝑓)) = (𝑡‘(1st𝑔)))
6 fveq2 6817 . . . . 5 (𝑓 = 𝑔 → (2nd𝑓) = (2nd𝑔))
76coeq2d 5800 . . . 4 (𝑓 = 𝑔 → (𝑡 ∘ (2nd𝑓)) = (𝑡 ∘ (2nd𝑔)))
85, 7opeq12d 4831 . . 3 (𝑓 = 𝑔 → ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩ = ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
94, 8cbvmpov 7436 . 2 (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
101, 9eqtri 2753 1 · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cop 4580   × cxp 5612  ccom 5618  cfv 6477  cmpo 7343  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-co 5623  df-iota 6433  df-fv 6485  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  dvhvscaval  41117
  Copyright terms: Public domain W3C validator