Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscacbv Structured version   Visualization version   GIF version

Theorem dvhvscacbv 40575
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
Assertion
Ref Expression
dvhvscacbv · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑔,𝐸   𝑇,𝑠,𝑓,𝑡,𝑔
Allowed substitution hints:   · (𝑡,𝑓,𝑔,𝑠)

Proof of Theorem dvhvscacbv
StepHypRef Expression
1 dvhvscaval.s . 2 · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
2 fveq1 6899 . . . 4 (𝑠 = 𝑡 → (𝑠‘(1st𝑓)) = (𝑡‘(1st𝑓)))
3 coeq1 5862 . . . 4 (𝑠 = 𝑡 → (𝑠 ∘ (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
42, 3opeq12d 4884 . . 3 (𝑠 = 𝑡 → ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩ = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
5 2fveq3 6905 . . . 4 (𝑓 = 𝑔 → (𝑡‘(1st𝑓)) = (𝑡‘(1st𝑔)))
6 fveq2 6900 . . . . 5 (𝑓 = 𝑔 → (2nd𝑓) = (2nd𝑔))
76coeq2d 5867 . . . 4 (𝑓 = 𝑔 → (𝑡 ∘ (2nd𝑓)) = (𝑡 ∘ (2nd𝑔)))
85, 7opeq12d 4884 . . 3 (𝑓 = 𝑔 → ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩ = ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
94, 8cbvmpov 7519 . 2 (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
101, 9eqtri 2755 1 · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cop 4636   × cxp 5678  ccom 5684  cfv 6551  cmpo 7426  1st c1st 7995  2nd c2nd 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-co 5689  df-iota 6503  df-fv 6559  df-oprab 7428  df-mpo 7429
This theorem is referenced by:  dvhvscaval  40576
  Copyright terms: Public domain W3C validator