![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscacbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscacbv | ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvscaval.s | . 2 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
2 | fveq1 6846 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑓))) | |
3 | coeq1 5818 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑓))) | |
4 | 2, 3 | opeq12d 4843 | . . 3 ⊢ (𝑠 = 𝑡 → 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉) |
5 | 2fveq3 6852 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑔))) | |
6 | fveq2 6847 | . . . . 5 ⊢ (𝑓 = 𝑔 → (2nd ‘𝑓) = (2nd ‘𝑔)) | |
7 | 6 | coeq2d 5823 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑔))) |
8 | 5, 7 | opeq12d 4843 | . . 3 ⊢ (𝑓 = 𝑔 → 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
9 | 4, 8 | cbvmpov 7457 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | 1, 9 | eqtri 2759 | 1 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 〈cop 4597 × cxp 5636 ∘ ccom 5642 ‘cfv 6501 ∈ cmpo 7364 1st c1st 7924 2nd c2nd 7925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3406 df-v 3448 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-co 5647 df-iota 6453 df-fv 6509 df-oprab 7366 df-mpo 7367 |
This theorem is referenced by: dvhvscaval 39635 |
Copyright terms: Public domain | W3C validator |