Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscacbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscacbv | ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvscaval.s | . 2 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
2 | fveq1 6662 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑓))) | |
3 | coeq1 5703 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑓))) | |
4 | 2, 3 | opeq12d 4774 | . . 3 ⊢ (𝑠 = 𝑡 → 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉) |
5 | 2fveq3 6668 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑔))) | |
6 | fveq2 6663 | . . . . 5 ⊢ (𝑓 = 𝑔 → (2nd ‘𝑓) = (2nd ‘𝑔)) | |
7 | 6 | coeq2d 5708 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑔))) |
8 | 5, 7 | opeq12d 4774 | . . 3 ⊢ (𝑓 = 𝑔 → 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
9 | 4, 8 | cbvmpov 7249 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | 1, 9 | eqtri 2781 | 1 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 〈cop 4531 × cxp 5526 ∘ ccom 5532 ‘cfv 6340 ∈ cmpo 7158 1st c1st 7697 2nd c2nd 7698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-co 5537 df-iota 6299 df-fv 6348 df-oprab 7160 df-mpo 7161 |
This theorem is referenced by: dvhvscaval 38710 |
Copyright terms: Public domain | W3C validator |