![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscaval | Structured version Visualization version GIF version |
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscaval | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6921 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝑔))) | |
2 | coeq1 5882 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝑔))) | |
3 | 1, 2 | opeq12d 4905 | . 2 ⊢ (𝑡 = 𝑈 → 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉) |
4 | 2fveq3 6927 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝐹))) | |
5 | fveq2 6922 | . . . 4 ⊢ (𝑔 = 𝐹 → (2nd ‘𝑔) = (2nd ‘𝐹)) | |
6 | 5 | coeq2d 5887 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝐹))) |
7 | 4, 6 | opeq12d 4905 | . 2 ⊢ (𝑔 = 𝐹 → 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
8 | dvhvscaval.s | . . 3 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
9 | 8 | dvhvscacbv 41057 | . 2 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | opex 5484 | . 2 ⊢ 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉 ∈ V | |
11 | 3, 7, 9, 10 | ovmpo 7612 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ∘ ccom 5704 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 1st c1st 8030 2nd c2nd 8031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 |
This theorem is referenced by: dvhvsca 41060 dvhopspN 41074 |
Copyright terms: Public domain | W3C validator |