Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscaval Structured version   Visualization version   GIF version

Theorem dvhvscaval 41035
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
Assertion
Ref Expression
dvhvscaval ((𝑈𝐸𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
Distinct variable groups:   𝑓,𝑠,𝐸   𝑇,𝑠,𝑓
Allowed substitution hints:   · (𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐹(𝑓,𝑠)

Proof of Theorem dvhvscaval
Dummy variables 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6884 . . 3 (𝑡 = 𝑈 → (𝑡‘(1st𝑔)) = (𝑈‘(1st𝑔)))
2 coeq1 5848 . . 3 (𝑡 = 𝑈 → (𝑡 ∘ (2nd𝑔)) = (𝑈 ∘ (2nd𝑔)))
31, 2opeq12d 4861 . 2 (𝑡 = 𝑈 → ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩ = ⟨(𝑈‘(1st𝑔)), (𝑈 ∘ (2nd𝑔))⟩)
4 2fveq3 6890 . . 3 (𝑔 = 𝐹 → (𝑈‘(1st𝑔)) = (𝑈‘(1st𝐹)))
5 fveq2 6885 . . . 4 (𝑔 = 𝐹 → (2nd𝑔) = (2nd𝐹))
65coeq2d 5853 . . 3 (𝑔 = 𝐹 → (𝑈 ∘ (2nd𝑔)) = (𝑈 ∘ (2nd𝐹)))
74, 6opeq12d 4861 . 2 (𝑔 = 𝐹 → ⟨(𝑈‘(1st𝑔)), (𝑈 ∘ (2nd𝑔))⟩ = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
8 dvhvscaval.s . . 3 · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
98dvhvscacbv 41034 . 2 · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
10 opex 5449 . 2 ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩ ∈ V
113, 7, 9, 10ovmpo 7574 1 ((𝑈𝐸𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4612   × cxp 5663  ccom 5669  cfv 6540  (class class class)co 7412  cmpo 7414  1st c1st 7993  2nd c2nd 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6493  df-fun 6542  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  dvhvsca  41037  dvhopspN  41051
  Copyright terms: Public domain W3C validator