Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscaval | Structured version Visualization version GIF version |
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscaval | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6755 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝑔))) | |
2 | coeq1 5755 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝑔))) | |
3 | 1, 2 | opeq12d 4809 | . 2 ⊢ (𝑡 = 𝑈 → 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉) |
4 | 2fveq3 6761 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝐹))) | |
5 | fveq2 6756 | . . . 4 ⊢ (𝑔 = 𝐹 → (2nd ‘𝑔) = (2nd ‘𝐹)) | |
6 | 5 | coeq2d 5760 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝐹))) |
7 | 4, 6 | opeq12d 4809 | . 2 ⊢ (𝑔 = 𝐹 → 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
8 | dvhvscaval.s | . . 3 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
9 | 8 | dvhvscacbv 39039 | . 2 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | opex 5373 | . 2 ⊢ 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉 ∈ V | |
11 | 3, 7, 9, 10 | ovmpo 7411 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: dvhvsca 39042 dvhopspN 39056 |
Copyright terms: Public domain | W3C validator |