Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscaval Structured version   Visualization version   GIF version

Theorem dvhvscaval 41078
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
Assertion
Ref Expression
dvhvscaval ((𝑈𝐸𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
Distinct variable groups:   𝑓,𝑠,𝐸   𝑇,𝑠,𝑓
Allowed substitution hints:   · (𝑓,𝑠)   𝑈(𝑓,𝑠)   𝐹(𝑓,𝑠)

Proof of Theorem dvhvscaval
Dummy variables 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6821 . . 3 (𝑡 = 𝑈 → (𝑡‘(1st𝑔)) = (𝑈‘(1st𝑔)))
2 coeq1 5800 . . 3 (𝑡 = 𝑈 → (𝑡 ∘ (2nd𝑔)) = (𝑈 ∘ (2nd𝑔)))
31, 2opeq12d 4832 . 2 (𝑡 = 𝑈 → ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩ = ⟨(𝑈‘(1st𝑔)), (𝑈 ∘ (2nd𝑔))⟩)
4 2fveq3 6827 . . 3 (𝑔 = 𝐹 → (𝑈‘(1st𝑔)) = (𝑈‘(1st𝐹)))
5 fveq2 6822 . . . 4 (𝑔 = 𝐹 → (2nd𝑔) = (2nd𝐹))
65coeq2d 5805 . . 3 (𝑔 = 𝐹 → (𝑈 ∘ (2nd𝑔)) = (𝑈 ∘ (2nd𝐹)))
74, 6opeq12d 4832 . 2 (𝑔 = 𝐹 → ⟨(𝑈‘(1st𝑔)), (𝑈 ∘ (2nd𝑔))⟩ = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
8 dvhvscaval.s . . 3 · = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
98dvhvscacbv 41077 . 2 · = (𝑡𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑡‘(1st𝑔)), (𝑡 ∘ (2nd𝑔))⟩)
10 opex 5407 . 2 ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩ ∈ V
113, 7, 9, 10ovmpo 7509 1 ((𝑈𝐸𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = ⟨(𝑈‘(1st𝐹)), (𝑈 ∘ (2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4583   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  dvhvsca  41080  dvhopspN  41094
  Copyright terms: Public domain W3C validator