| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscaval | Structured version Visualization version GIF version | ||
| Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
| Ref | Expression |
|---|---|
| dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
| Ref | Expression |
|---|---|
| dvhvscaval | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝑔))) | |
| 2 | coeq1 5796 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝑔))) | |
| 3 | 1, 2 | opeq12d 4830 | . 2 ⊢ (𝑡 = 𝑈 → 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉) |
| 4 | 2fveq3 6827 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝐹))) | |
| 5 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐹 → (2nd ‘𝑔) = (2nd ‘𝐹)) | |
| 6 | 5 | coeq2d 5801 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝐹))) |
| 7 | 4, 6 | opeq12d 4830 | . 2 ⊢ (𝑔 = 𝐹 → 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
| 8 | dvhvscaval.s | . . 3 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
| 9 | 8 | dvhvscacbv 41145 | . 2 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
| 10 | opex 5402 | . 2 ⊢ 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉 ∈ V | |
| 11 | 3, 7, 9, 10 | ovmpo 7506 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: dvhvsca 41148 dvhopspN 41162 |
| Copyright terms: Public domain | W3C validator |