Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscaval | Structured version Visualization version GIF version |
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscaval | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6673 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝑔))) | |
2 | coeq1 5700 | . . 3 ⊢ (𝑡 = 𝑈 → (𝑡 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝑔))) | |
3 | 1, 2 | opeq12d 4769 | . 2 ⊢ (𝑡 = 𝑈 → 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉) |
4 | 2fveq3 6679 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈‘(1st ‘𝑔)) = (𝑈‘(1st ‘𝐹))) | |
5 | fveq2 6674 | . . . 4 ⊢ (𝑔 = 𝐹 → (2nd ‘𝑔) = (2nd ‘𝐹)) | |
6 | 5 | coeq2d 5705 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑈 ∘ (2nd ‘𝑔)) = (𝑈 ∘ (2nd ‘𝐹))) |
7 | 4, 6 | opeq12d 4769 | . 2 ⊢ (𝑔 = 𝐹 → 〈(𝑈‘(1st ‘𝑔)), (𝑈 ∘ (2nd ‘𝑔))〉 = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
8 | dvhvscaval.s | . . 3 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
9 | 8 | dvhvscacbv 38735 | . 2 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | opex 5322 | . 2 ⊢ 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉 ∈ V | |
11 | 3, 7, 9, 10 | ovmpo 7325 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 〈cop 4522 × cxp 5523 ∘ ccom 5529 ‘cfv 6339 (class class class)co 7170 ∈ cmpo 7172 1st c1st 7712 2nd c2nd 7713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 |
This theorem is referenced by: dvhvsca 38738 dvhopspN 38752 |
Copyright terms: Public domain | W3C validator |