Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres2 Structured version   Visualization version   GIF version

Theorem eccnvepres2 36543
Description: The restricted converse epsilon coset of an element of the restriction is the element itself. (Contributed by Peter Mazsa, 16-Jul-2019.)
Assertion
Ref Expression
eccnvepres2 (𝐵𝐴 → [𝐵]( E ↾ 𝐴) = 𝐵)

Proof of Theorem eccnvepres2
StepHypRef Expression
1 ecres2 36537 . 2 (𝐵𝐴 → [𝐵]( E ↾ 𝐴) = [𝐵] E )
2 eccnvep 36540 . 2 (𝐵𝐴 → [𝐵] E = 𝐵)
31, 2eqtrd 2776 1 (𝐵𝐴 → [𝐵]( E ↾ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   E cep 5517  ccnv 5613  cres 5616  [cec 8559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-eprel 5518  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8563
This theorem is referenced by:  eccnvepres3  36544
  Copyright terms: Public domain W3C validator