Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres2 | Structured version Visualization version GIF version |
Description: The restricted converse epsilon coset of an element of the restriction is the element itself. (Contributed by Peter Mazsa, 16-Jul-2019.) |
Ref | Expression |
---|---|
eccnvepres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 36537 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = [𝐵]◡ E ) | |
2 | eccnvep 36540 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]◡ E = 𝐵) | |
3 | 1, 2 | eqtrd 2776 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 E cep 5517 ◡ccnv 5613 ↾ cres 5616 [cec 8559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-eprel 5518 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8563 |
This theorem is referenced by: eccnvepres3 36544 |
Copyright terms: Public domain | W3C validator |