![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres2 | Structured version Visualization version GIF version |
Description: The restricted converse epsilon coset of an element of the restriction is the element itself. (Contributed by Peter Mazsa, 16-Jul-2019.) |
Ref | Expression |
---|---|
eccnvepres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 38273 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = [𝐵]◡ E ) | |
2 | eccnvep 38276 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]◡ E = 𝐵) | |
3 | 1, 2 | eqtrd 2776 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](◡ E ↾ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 E cep 5589 ◡ccnv 5689 ↾ cres 5692 [cec 8748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-eprel 5590 df-xp 5696 df-rel 5697 df-cnv 5698 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-ec 8752 |
This theorem is referenced by: eccnvepres3 38280 |
Copyright terms: Public domain | W3C validator |