| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvep | Structured version Visualization version GIF version | ||
| Description: The converse epsilon coset of a set is the set. (Contributed by Peter Mazsa, 27-Jan-2019.) |
| Ref | Expression |
|---|---|
| eccnvep | ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleccnvep 38265 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴]◡ E ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | eqrdv 2727 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 E cep 5518 ◡ccnv 5618 [cec 8623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 |
| This theorem is referenced by: extep 38267 disjeccnvep 38268 eccnvepres2 38269 dfeldisj5 38709 |
| Copyright terms: Public domain | W3C validator |