Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvep Structured version   Visualization version   GIF version

Theorem eccnvep 38330
Description: The converse epsilon coset of a set is the set. (Contributed by Peter Mazsa, 27-Jan-2019.)
Assertion
Ref Expression
eccnvep (𝐴𝑉 → [𝐴] E = 𝐴)

Proof of Theorem eccnvep
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleccnvep 38329 . 2 (𝐴𝑉 → (𝑥 ∈ [𝐴] E ↔ 𝑥𝐴))
21eqrdv 2729 1 (𝐴𝑉 → [𝐴] E = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   E cep 5513  ccnv 5613  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by:  extep  38331  disjeccnvep  38332  eccnvepres2  38333  ecxrncnvep2  38444  dfeldisj5  38829
  Copyright terms: Public domain W3C validator