Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeccnvep Structured version   Visualization version   GIF version

Theorem disjeccnvep 36500
Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020.)
Assertion
Ref Expression
disjeccnvep ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))

Proof of Theorem disjeccnvep
StepHypRef Expression
1 eccnvep 36498 . . 3 (𝐴𝑉 → [𝐴] E = 𝐴)
2 eccnvep 36498 . . 3 (𝐵𝑊 → [𝐵] E = 𝐵)
31, 2ineqan12d 4154 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴] E ∩ [𝐵] E ) = (𝐴𝐵))
43eqeq1d 2738 1 ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  cin 3891  c0 4262   E cep 5505  ccnv 5599  [cec 8527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531
This theorem is referenced by:  disjecxrncnvep  36610
  Copyright terms: Public domain W3C validator