| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeccnvep | Structured version Visualization version GIF version | ||
| Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020.) |
| Ref | Expression |
|---|---|
| disjeccnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eccnvep 38267 | . . 3 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) | |
| 2 | eccnvep 38267 | . . 3 ⊢ (𝐵 ∈ 𝑊 → [𝐵]◡ E = 𝐵) | |
| 3 | 1, 2 | ineqan12d 4193 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ E ∩ [𝐵]◡ E ) = (𝐴 ∩ 𝐵)) |
| 4 | 3 | eqeq1d 2732 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3921 ∅c0 4304 E cep 5545 ◡ccnv 5645 [cec 8680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-eprel 5546 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 |
| This theorem is referenced by: disjecxrncnvep 38375 |
| Copyright terms: Public domain | W3C validator |