Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeccnvep | Structured version Visualization version GIF version |
Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020.) |
Ref | Expression |
---|---|
disjeccnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eccnvep 36498 | . . 3 ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡ E = 𝐴) | |
2 | eccnvep 36498 | . . 3 ⊢ (𝐵 ∈ 𝑊 → [𝐵]◡ E = 𝐵) | |
3 | 1, 2 | ineqan12d 4154 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ E ∩ [𝐵]◡ E ) = (𝐴 ∩ 𝐵)) |
4 | 3 | eqeq1d 2738 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ∅c0 4262 E cep 5505 ◡ccnv 5599 [cec 8527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 |
This theorem is referenced by: disjecxrncnvep 36610 |
Copyright terms: Public domain | W3C validator |