Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjeccnvep Structured version   Visualization version   GIF version

Theorem disjeccnvep 37811
Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020.)
Assertion
Ref Expression
disjeccnvep ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))

Proof of Theorem disjeccnvep
StepHypRef Expression
1 eccnvep 37809 . . 3 (𝐴𝑉 → [𝐴] E = 𝐴)
2 eccnvep 37809 . . 3 (𝐵𝑊 → [𝐵] E = 𝐵)
31, 2ineqan12d 4208 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴] E ∩ [𝐵] E ) = (𝐴𝐵))
43eqeq1d 2727 1 ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cin 3939  c0 4318   E cep 5575  ccnv 5671  [cec 8719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-eprel 5576  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8723
This theorem is referenced by:  disjecxrncnvep  37917
  Copyright terms: Public domain W3C validator