MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsdmb Structured version   Visualization version   GIF version

Theorem ecelqsdmb 8761
Description: 𝑅-coset of 𝐵 in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
ecelqsdmb (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ 𝐵𝐴))

Proof of Theorem ecelqsdmb
StepHypRef Expression
1 ecelqsdm 8760 . . . 4 ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵𝐴)
21ex 412 . . 3 (dom 𝑅 = 𝐴 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) → 𝐵𝐴))
32adantl 481 . 2 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) → 𝐵𝐴))
4 ecelqs 8743 . . . 4 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
54ex 412 . . 3 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)))
65adantr 480 . 2 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)))
73, 6impbid 212 1 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  dom cdm 5640  cres 5642  [cec 8671   / cqs 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ec 8675  df-qs 8679
This theorem is referenced by:  eceldmqs  8762
  Copyright terms: Public domain W3C validator