MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsdmb Structured version   Visualization version   GIF version

Theorem ecelqsdmb 8710
Description: 𝑅-coset of 𝐵 in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
ecelqsdmb (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ 𝐵𝐴))

Proof of Theorem ecelqsdmb
StepHypRef Expression
1 ecelqsdm 8709 . . . 4 ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵𝐴)
21ex 412 . . 3 (dom 𝑅 = 𝐴 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) → 𝐵𝐴))
32adantl 481 . 2 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) → 𝐵𝐴))
4 ecelqs 8692 . . . 4 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
54ex 412 . . 3 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)))
65adantr 480 . 2 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)))
73, 6impbid 212 1 (((𝑅𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  dom cdm 5614  cres 5616  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628
This theorem is referenced by:  eceldmqs  8711
  Copyright terms: Public domain W3C validator