| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceldmqs | Structured version Visualization version GIF version | ||
| Description: 𝑅-coset in its domain quotient. This is the bridge between 𝐴 in the domain and its block [𝐴]𝑅 in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| eceldmqs | ⊢ (𝑅 ∈ 𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 6000 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ dom 𝑅) ∈ V) | |
| 2 | eqid 2730 | . 2 ⊢ dom 𝑅 = dom 𝑅 | |
| 3 | ecelqsdmb 8761 | . 2 ⊢ (((𝑅 ↾ dom 𝑅) ∈ V ∧ dom 𝑅 = dom 𝑅) → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) | |
| 4 | 1, 2, 3 | sylancl 586 | 1 ⊢ (𝑅 ∈ 𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 dom cdm 5640 ↾ cres 5642 [cec 8671 / cqs 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 df-qs 8679 |
| This theorem is referenced by: eceldmqsxrncnvepres 38393 eceldmqsxrncnvepres2 38394 |
| Copyright terms: Public domain | W3C validator |