MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceldmqs Structured version   Visualization version   GIF version

Theorem eceldmqs 8714
Description: 𝑅-coset in its domain quotient. This is the bridge between 𝐴 in the domain and its block [𝐴]𝑅 in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
eceldmqs (𝑅𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))

Proof of Theorem eceldmqs
StepHypRef Expression
1 resexg 5978 . 2 (𝑅𝑉 → (𝑅 ↾ dom 𝑅) ∈ V)
2 eqid 2729 . 2 dom 𝑅 = dom 𝑅
3 ecelqsdmb 8713 . 2 (((𝑅 ↾ dom 𝑅) ∈ V ∧ dom 𝑅 = dom 𝑅) → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))
41, 2, 3sylancl 586 1 (𝑅𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3436  dom cdm 5619  cres 5621  [cec 8623   / cqs 8624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631
This theorem is referenced by:  eceldmqsxrncnvepres  38384  eceldmqsxrncnvepres2  38385
  Copyright terms: Public domain W3C validator