MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceldmqs Structured version   Visualization version   GIF version

Theorem eceldmqs 8706
Description: 𝑅-coset in its domain quotient. This is the bridge between 𝐴 in the domain and its block [𝐴]𝑅 in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
eceldmqs (𝑅𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))

Proof of Theorem eceldmqs
StepHypRef Expression
1 resexg 5971 . 2 (𝑅𝑉 → (𝑅 ↾ dom 𝑅) ∈ V)
2 eqid 2731 . 2 dom 𝑅 = dom 𝑅
3 ecelqsdmb 8705 . 2 (((𝑅 ↾ dom 𝑅) ∈ V ∧ dom 𝑅 = dom 𝑅) → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))
41, 2, 3sylancl 586 1 (𝑅𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  dom cdm 5611  cres 5613  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-qs 8623
This theorem is referenced by:  eceldmqsxrncnvepres  38444  eceldmqsxrncnvepres2  38445
  Copyright terms: Public domain W3C validator