| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceldmqs | Structured version Visualization version GIF version | ||
| Description: 𝑅-coset in its domain quotient. This is the bridge between 𝐴 in the domain and its block [𝐴]𝑅 in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| eceldmqs | ⊢ (𝑅 ∈ 𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 5971 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ dom 𝑅) ∈ V) | |
| 2 | eqid 2731 | . 2 ⊢ dom 𝑅 = dom 𝑅 | |
| 3 | ecelqsdmb 8705 | . 2 ⊢ (((𝑅 ↾ dom 𝑅) ∈ V ∧ dom 𝑅 = dom 𝑅) → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) | |
| 4 | 1, 2, 3 | sylancl 586 | 1 ⊢ (𝑅 ∈ 𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5611 ↾ cres 5613 [cec 8615 / cqs 8616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 df-qs 8623 |
| This theorem is referenced by: eceldmqsxrncnvepres 38444 eceldmqsxrncnvepres2 38445 |
| Copyright terms: Public domain | W3C validator |