MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqs Structured version   Visualization version   GIF version

Theorem ecelqs 8692
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
ecelqs (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 [𝐵]𝑅 = [𝐵]𝑅
2 eceq1 8661 . . . . 5 (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅)
32rspceeqv 3595 . . . 4 ((𝐵𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
41, 3mpan2 691 . . 3 (𝐵𝐴 → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
54adantl 481 . 2 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
6 elecex 8672 . . . 4 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ V))
76imp 406 . . 3 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ V)
8 elqsg 8688 . . 3 ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
97, 8syl 17 . 2 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
105, 9mpbird 257 1 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cres 5616  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628
This theorem is referenced by:  ecelqsw  8693  ecelqsdmb  8710
  Copyright terms: Public domain W3C validator