| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqs | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| ecelqs | ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ [𝐵]𝑅 = [𝐵]𝑅 | |
| 2 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅) | |
| 3 | 2 | rspceeqv 3595 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 5 | 4 | adantl 481 | . 2 ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 6 | elecex 8672 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) | |
| 7 | 6 | imp 406 | . . 3 ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ V) |
| 8 | elqsg 8688 | . . 3 ⊢ ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) |
| 10 | 5, 9 | mpbird 257 | 1 ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ↾ cres 5616 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: ecelqsw 8693 ecelqsdmb 8710 |
| Copyright terms: Public domain | W3C validator |