MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqs Structured version   Visualization version   GIF version

Theorem ecelqs 8743
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
ecelqs (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 [𝐵]𝑅 = [𝐵]𝑅
2 eceq1 8712 . . . . 5 (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅)
32rspceeqv 3614 . . . 4 ((𝐵𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
41, 3mpan2 691 . . 3 (𝐵𝐴 → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
54adantl 481 . 2 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
6 elecex 8723 . . . 4 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ V))
76imp 406 . . 3 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ V)
8 elqsg 8739 . . 3 ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
97, 8syl 17 . 2 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
105, 9mpbird 257 1 (((𝑅𝐴) ∈ 𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cres 5642  [cec 8671   / cqs 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ec 8675  df-qs 8679
This theorem is referenced by:  ecelqsw  8744  ecelqsdmb  8761
  Copyright terms: Public domain W3C validator