Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecid | Structured version Visualization version GIF version |
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ecid | ⊢ [𝐴]◡ E = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | ecid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | elec 8542 | . . 3 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦) |
4 | 2, 1 | brcnv 5791 | . . 3 ⊢ (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴) |
5 | 2 | epeli 5497 | . . 3 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
6 | 3, 4, 5 | 3bitri 297 | . 2 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴) |
7 | 6 | eqriv 2735 | 1 ⊢ [𝐴]◡ E = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 E cep 5494 ◡ccnv 5588 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: qsid 8572 addcnsrec 10899 mulcnsrec 10900 |
Copyright terms: Public domain | W3C validator |