Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecid | Structured version Visualization version GIF version |
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ecid | ⊢ [𝐴]◡ E = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | ecid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | elec 8500 | . . 3 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦) |
4 | 2, 1 | brcnv 5780 | . . 3 ⊢ (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴) |
5 | 2 | epeli 5488 | . . 3 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
6 | 3, 4, 5 | 3bitri 296 | . 2 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴) |
7 | 6 | eqriv 2735 | 1 ⊢ [𝐴]◡ E = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 E cep 5485 ◡ccnv 5579 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: qsid 8530 addcnsrec 10830 mulcnsrec 10831 |
Copyright terms: Public domain | W3C validator |