| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecid | Structured version Visualization version GIF version | ||
| Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ecid | ⊢ [𝐴]◡ E = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | ecid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 1, 2 | elec 8663 | . . 3 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦) |
| 4 | 2, 1 | brcnv 5820 | . . 3 ⊢ (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴) |
| 5 | 2 | epeli 5516 | . . 3 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 6 | 3, 4, 5 | 3bitri 297 | . 2 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴) |
| 7 | 6 | eqriv 2727 | 1 ⊢ [𝐴]◡ E = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 Vcvv 3434 class class class wbr 5089 E cep 5513 ◡ccnv 5613 [cec 8615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8619 |
| This theorem is referenced by: qsid 8700 addcnsrec 11026 mulcnsrec 11027 |
| Copyright terms: Public domain | W3C validator |