MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecid Structured version   Visualization version   GIF version

Theorem ecid 8714
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1 𝐴 ∈ V
Assertion
Ref Expression
ecid [𝐴] E = 𝐴

Proof of Theorem ecid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . 4 𝑦 ∈ V
2 ecid.1 . . . 4 𝐴 ∈ V
31, 2elec 8678 . . 3 (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦)
42, 1brcnv 5829 . . 3 (𝐴 E 𝑦𝑦 E 𝐴)
52epeli 5525 . . 3 (𝑦 E 𝐴𝑦𝐴)
63, 4, 53bitri 297 . 2 (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴)
76eqriv 2726 1 [𝐴] E = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095   E cep 5522  ccnv 5622  [cec 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-eprel 5523  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634
This theorem is referenced by:  qsid  8715  addcnsrec  11056  mulcnsrec  11057
  Copyright terms: Public domain W3C validator