![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecid | Structured version Visualization version GIF version |
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ecid | ⊢ [𝐴]◡ E = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | ecid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | elec 8809 | . . 3 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦) |
4 | 2, 1 | brcnv 5907 | . . 3 ⊢ (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴) |
5 | 2 | epeli 5601 | . . 3 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
6 | 3, 4, 5 | 3bitri 297 | . 2 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴) |
7 | 6 | eqriv 2737 | 1 ⊢ [𝐴]◡ E = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 E cep 5598 ◡ccnv 5699 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: qsid 8841 addcnsrec 11212 mulcnsrec 11213 |
Copyright terms: Public domain | W3C validator |