MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecid Structured version   Visualization version   GIF version

Theorem ecid 8821
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1 𝐴 ∈ V
Assertion
Ref Expression
ecid [𝐴] E = 𝐴

Proof of Theorem ecid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . 4 𝑦 ∈ V
2 ecid.1 . . . 4 𝐴 ∈ V
31, 2elec 8790 . . 3 (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦)
42, 1brcnv 5896 . . 3 (𝐴 E 𝑦𝑦 E 𝐴)
52epeli 5591 . . 3 (𝑦 E 𝐴𝑦𝐴)
63, 4, 53bitri 297 . 2 (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴)
76eqriv 2732 1 [𝐴] E = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148   E cep 5588  ccnv 5688  [cec 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746
This theorem is referenced by:  qsid  8822  addcnsrec  11181  mulcnsrec  11182
  Copyright terms: Public domain W3C validator