MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecid Structured version   Visualization version   GIF version

Theorem ecid 8529
Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1 𝐴 ∈ V
Assertion
Ref Expression
ecid [𝐴] E = 𝐴

Proof of Theorem ecid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . 4 𝑦 ∈ V
2 ecid.1 . . . 4 𝐴 ∈ V
31, 2elec 8500 . . 3 (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦)
42, 1brcnv 5780 . . 3 (𝐴 E 𝑦𝑦 E 𝐴)
52epeli 5488 . . 3 (𝑦 E 𝐴𝑦𝐴)
63, 4, 53bitri 296 . 2 (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴)
76eqriv 2735 1 [𝐴] E = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070   E cep 5485  ccnv 5579  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  qsid  8530  addcnsrec  10830  mulcnsrec  10831
  Copyright terms: Public domain W3C validator