| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecid | Structured version Visualization version GIF version | ||
| Description: A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ecid | ⊢ [𝐴]◡ E = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | ecid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 1, 2 | elec 8678 | . . 3 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝑦) |
| 4 | 2, 1 | brcnv 5829 | . . 3 ⊢ (𝐴◡ E 𝑦 ↔ 𝑦 E 𝐴) |
| 5 | 2 | epeli 5525 | . . 3 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 6 | 3, 4, 5 | 3bitri 297 | . 2 ⊢ (𝑦 ∈ [𝐴]◡ E ↔ 𝑦 ∈ 𝐴) |
| 7 | 6 | eqriv 2726 | 1 ⊢ [𝐴]◡ E = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 E cep 5522 ◡ccnv 5622 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 |
| This theorem is referenced by: qsid 8715 addcnsrec 11056 mulcnsrec 11057 |
| Copyright terms: Public domain | W3C validator |