Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjeqd Structured version   Visualization version   GIF version

Theorem eldisjeqd 38682
Description: Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.)
Hypothesis
Ref Expression
eldisjeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eldisjeqd (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))

Proof of Theorem eldisjeqd
StepHypRef Expression
1 eldisjeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 eldisjeq 38680 . 2 (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
31, 2syl 17 1 (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539   ElDisj weldisj 38156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-coss 38350  df-cnvrefrel 38466  df-funALTV 38621  df-disjALTV 38644  df-eldisj 38646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator