Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjres Structured version   Visualization version   GIF version

Theorem disjres 38741
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjres (Rel 𝑅 → ( Disj (𝑅𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣

Proof of Theorem disjres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relres 5960 . . . 4 Rel (𝑅𝐴)
2 dfdisjALTV4 38713 . . . 4 ( Disj (𝑅𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥 ∧ Rel (𝑅𝐴)))
31, 2mpbiran2 710 . . 3 ( Disj (𝑅𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥)
4 brres 5941 . . . . . . 7 (𝑥 ∈ V → (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥)))
54elv 3443 . . . . . 6 (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥))
65mobii 2541 . . . . 5 (∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑢𝑅𝑥))
7 df-rmo 3345 . . . . 5 (∃*𝑢𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢𝐴𝑢𝑅𝑥))
86, 7bitr4i 278 . . . 4 (∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑢𝑅𝑥)
98albii 1819 . . 3 (∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥)
103, 9bitri 275 . 2 ( Disj (𝑅𝐴) ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥)
11 id 22 . . 3 (𝑢 = 𝑣𝑢 = 𝑣)
1211inecmo 38342 . 2 (Rel 𝑅 → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥))
1310, 12bitr4id 290 1 (Rel 𝑅 → ( Disj (𝑅𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  ∃*wrmo 3344  Vcvv 3438  cin 3904  c0 4286   class class class wbr 5095  cres 5625  Rel wrel 5628  [cec 8630   Disj wdisjALTV 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-coss 38407  df-cnvrefrel 38523  df-disjALTV 38702
This theorem is referenced by:  disjxrnres5  38744
  Copyright terms: Public domain W3C validator