| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjres | Structured version Visualization version GIF version | ||
| Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjres | ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5949 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 2 | dfdisjALTV4 38754 | . . . 4 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ∧ Rel (𝑅 ↾ 𝐴))) | |
| 3 | 1, 2 | mpbiran2 710 | . . 3 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥) |
| 4 | brres 5930 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
| 5 | 4 | elv 3441 | . . . . . 6 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 6 | 5 | mobii 2543 | . . . . 5 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 7 | df-rmo 3346 | . . . . 5 ⊢ (∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) | |
| 8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 9 | 8 | albii 1820 | . . 3 ⊢ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 10 | 3, 9 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 11 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
| 12 | 11 | inecmo 38383 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
| 13 | 10, 12 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 ∀wral 3047 ∃*wrmo 3345 Vcvv 3436 ∩ cin 3896 ∅c0 4278 class class class wbr 5086 ↾ cres 5613 Rel wrel 5616 [cec 8615 Disj wdisjALTV 38249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 df-coss 38448 df-cnvrefrel 38564 df-disjALTV 38743 |
| This theorem is referenced by: disjxrnres5 38785 |
| Copyright terms: Public domain | W3C validator |