Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjres Structured version   Visualization version   GIF version

Theorem disjres 38743
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjres (Rel 𝑅 → ( Disj (𝑅𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣

Proof of Theorem disjres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relres 5979 . . . 4 Rel (𝑅𝐴)
2 dfdisjALTV4 38715 . . . 4 ( Disj (𝑅𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥 ∧ Rel (𝑅𝐴)))
31, 2mpbiran2 710 . . 3 ( Disj (𝑅𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥)
4 brres 5960 . . . . . . 7 (𝑥 ∈ V → (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥)))
54elv 3455 . . . . . 6 (𝑢(𝑅𝐴)𝑥 ↔ (𝑢𝐴𝑢𝑅𝑥))
65mobii 2542 . . . . 5 (∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∃*𝑢(𝑢𝐴𝑢𝑅𝑥))
7 df-rmo 3356 . . . . 5 (∃*𝑢𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢𝐴𝑢𝑅𝑥))
86, 7bitr4i 278 . . . 4 (∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∃*𝑢𝐴 𝑢𝑅𝑥)
98albii 1819 . . 3 (∀𝑥∃*𝑢 𝑢(𝑅𝐴)𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥)
103, 9bitri 275 . 2 ( Disj (𝑅𝐴) ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥)
11 id 22 . . 3 (𝑢 = 𝑣𝑢 = 𝑣)
1211inecmo 38344 . 2 (Rel 𝑅 → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥))
1310, 12bitr4id 290 1 (Rel 𝑅 → ( Disj (𝑅𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  wral 3045  ∃*wrmo 3355  Vcvv 3450  cin 3916  c0 4299   class class class wbr 5110  cres 5643  Rel wrel 5646  [cec 8672   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  disjxrnres5  38746
  Copyright terms: Public domain W3C validator