![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjres | Structured version Visualization version GIF version |
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjres | ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6035 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | dfdisjALTV4 38672 | . . . 4 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ∧ Rel (𝑅 ↾ 𝐴))) | |
3 | 1, 2 | mpbiran2 709 | . . 3 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥) |
4 | brres 6016 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
5 | 4 | elv 3493 | . . . . . 6 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
6 | 5 | mobii 2551 | . . . . 5 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
7 | df-rmo 3388 | . . . . 5 ⊢ (∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) | |
8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
9 | 8 | albii 1817 | . . 3 ⊢ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
10 | 3, 9 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
11 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
12 | 11 | inecmo 38311 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
13 | 10, 12 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∀wral 3067 ∃*wrmo 3387 Vcvv 3488 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 ↾ cres 5702 Rel wrel 5705 [cec 8761 Disj wdisjALTV 38169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-coss 38367 df-cnvrefrel 38483 df-disjALTV 38661 |
This theorem is referenced by: disjxrnres5 38703 |
Copyright terms: Public domain | W3C validator |