![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjres | Structured version Visualization version GIF version |
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjres | ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6026 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | dfdisjALTV4 38698 | . . . 4 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ∧ Rel (𝑅 ↾ 𝐴))) | |
3 | 1, 2 | mpbiran2 710 | . . 3 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥) |
4 | brres 6007 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
5 | 4 | elv 3483 | . . . . . 6 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
6 | 5 | mobii 2546 | . . . . 5 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
7 | df-rmo 3378 | . . . . 5 ⊢ (∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) | |
8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
9 | 8 | albii 1816 | . . 3 ⊢ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
10 | 3, 9 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
11 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
12 | 11 | inecmo 38337 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
13 | 10, 12 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 ∀wral 3059 ∃*wrmo 3377 Vcvv 3478 ∩ cin 3962 ∅c0 4339 class class class wbr 5148 ↾ cres 5691 Rel wrel 5694 [cec 8742 Disj wdisjALTV 38196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-coss 38393 df-cnvrefrel 38509 df-disjALTV 38687 |
This theorem is referenced by: disjxrnres5 38729 |
Copyright terms: Public domain | W3C validator |