| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjres | Structured version Visualization version GIF version | ||
| Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjres | ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5979 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 2 | dfdisjALTV4 38715 | . . . 4 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ∧ Rel (𝑅 ↾ 𝐴))) | |
| 3 | 1, 2 | mpbiran2 710 | . . 3 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥) |
| 4 | brres 5960 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
| 5 | 4 | elv 3455 | . . . . . 6 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 6 | 5 | mobii 2542 | . . . . 5 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 7 | df-rmo 3356 | . . . . 5 ⊢ (∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) | |
| 8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 9 | 8 | albii 1819 | . . 3 ⊢ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 10 | 3, 9 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
| 11 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
| 12 | 11 | inecmo 38344 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
| 13 | 10, 12 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 ∀wral 3045 ∃*wrmo 3355 Vcvv 3450 ∩ cin 3916 ∅c0 4299 class class class wbr 5110 ↾ cres 5643 Rel wrel 5646 [cec 8672 Disj wdisjALTV 38210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-coss 38409 df-cnvrefrel 38525 df-disjALTV 38704 |
| This theorem is referenced by: disjxrnres5 38746 |
| Copyright terms: Public domain | W3C validator |