![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjres | Structured version Visualization version GIF version |
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjres | ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6011 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | dfdisjALTV4 37586 | . . . 4 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ∧ Rel (𝑅 ↾ 𝐴))) | |
3 | 1, 2 | mpbiran2 709 | . . 3 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥) |
4 | brres 5989 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
5 | 4 | elv 3481 | . . . . . 6 ⊢ (𝑢(𝑅 ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
6 | 5 | mobii 2543 | . . . . 5 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
7 | df-rmo 3377 | . . . . 5 ⊢ (∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) | |
8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ (∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
9 | 8 | albii 1822 | . . 3 ⊢ (∀𝑥∃*𝑢 𝑢(𝑅 ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
10 | 3, 9 | bitri 275 | . 2 ⊢ ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥) |
11 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
12 | 11 | inecmo 37224 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
13 | 10, 12 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∃*wmo 2533 ∀wral 3062 ∃*wrmo 3376 Vcvv 3475 ∩ cin 3948 ∅c0 4323 class class class wbr 5149 ↾ cres 5679 Rel wrel 5682 [cec 8701 Disj wdisjALTV 37077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-coss 37281 df-cnvrefrel 37397 df-disjALTV 37575 |
This theorem is referenced by: disjxrnres5 37617 |
Copyright terms: Public domain | W3C validator |