Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjeqi | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eldisjeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eldisjeqi | ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eldisjeq 36779 | . 2 ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ElDisj weldisj 36296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-coss 36464 df-cnvrefrel 36570 df-funALTV 36720 df-disjALTV 36743 df-eldisj 36745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |