| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eldisjeqi | ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eldisjeq 38758 | . 2 ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ElDisj weldisj 38230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-11 2159 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coss 38427 df-cnvrefrel 38543 df-funALTV 38699 df-disjALTV 38722 df-eldisj 38724 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |