| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elima2 | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| elima.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elima2 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elima 6038 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
| 3 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐵𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 class class class wbr 5109 “ cima 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 |
| This theorem is referenced by: elima3 6040 dminss 6128 imainss 6129 imadif 6602 metcld2 25213 isch2 31158 dfdm5 35755 dfrn5 35756 brimg 35920 coxp 48811 |
| Copyright terms: Public domain | W3C validator |