Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elima2 | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima2 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elima 5989 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
3 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐵𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ∃wrex 3071 Vcvv 3441 class class class wbr 5085 “ cima 5608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-xp 5611 df-cnv 5613 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 |
This theorem is referenced by: elima3 5991 dminss 6076 imainss 6077 imadif 6552 metcld2 24542 isch2 29693 dfdm5 33849 dfrn5 33850 brimg 34300 |
Copyright terms: Public domain | W3C validator |