![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metcld2 | Structured version Visualization version GIF version |
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
metcld.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
metcld2 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcld.2 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | metcld 25227 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
3 | 19.23v 1938 | . . . . 5 ⊢ (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆)) | |
4 | vex 3473 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 6063 | . . . . . . 7 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) |
6 | id 22 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋) | |
7 | elfvdm 6928 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
8 | ssexg 5317 | . . . . . . . . . . 11 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝑆 ∈ V) | |
9 | 6, 7, 8 | syl2anr 596 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ V) |
10 | nnex 12242 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
11 | elmapg 8851 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) | |
12 | 9, 10, 11 | sylancl 585 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) |
13 | 12 | anbi1d 629 | . . . . . . . 8 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
14 | 13 | exbidv 1917 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
15 | 5, 14 | bitr2id 284 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)))) |
16 | 15 | imbi1d 341 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
17 | 3, 16 | bitrid 283 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
18 | 17 | albidv 1916 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
19 | dfss2 3964 | . . 3 ⊢ (((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆)) | |
20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
21 | 2, 20 | bitrd 279 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 class class class wbr 5142 dom cdm 5672 “ cima 5675 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8838 ℕcn 12236 ∞Metcxmet 21257 MetOpencmopn 21262 Clsdccld 22913 ⇝𝑡clm 23123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cc 10452 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-card 9956 df-acn 9959 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-fz 13511 df-topgen 17418 df-psmet 21264 df-xmet 21265 df-bl 21267 df-mopn 21268 df-top 22789 df-topon 22806 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-lm 23126 df-1stc 23336 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |