MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Structured version   Visualization version   GIF version

Theorem metcld2 23912
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcld2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))

Proof of Theorem metcld2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcld.2 . . 3 𝐽 = (MetOpen‘𝐷)
21metcld 23911 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
3 19.23v 1943 . . . . 5 (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆))
4 vex 3499 . . . . . . . 8 𝑥 ∈ V
54elima2 5937 . . . . . . 7 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
6 id 22 . . . . . . . . . . 11 (𝑆𝑋𝑆𝑋)
7 elfvdm 6704 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8 ssexg 5229 . . . . . . . . . . 11 ((𝑆𝑋𝑋 ∈ dom ∞Met) → 𝑆 ∈ V)
96, 7, 8syl2anr 598 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ V)
10 nnex 11646 . . . . . . . . . 10 ℕ ∈ V
11 elmapg 8421 . . . . . . . . . 10 ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
129, 10, 11sylancl 588 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
1312anbi1d 631 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
1413exbidv 1922 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
155, 14syl5rbb 286 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ))))
1615imbi1d 344 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
173, 16syl5bb 285 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
1817albidv 1921 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
19 dfss2 3957 . . 3 (((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆))
2018, 19syl6bbr 291 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
212, 20bitrd 281 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  wss 3938   class class class wbr 5068  dom cdm 5557  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cn 11640  ∞Metcxmet 20532  MetOpencmopn 20537  Clsdccld 21626  𝑡clm 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-fz 12896  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-lm 21839  df-1stc 22049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator