| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcld2 | Structured version Visualization version GIF version | ||
| Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| metcld.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| metcld2 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | metcld 25340 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
| 3 | 19.23v 1942 | . . . . 5 ⊢ (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆)) | |
| 4 | vex 3484 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elima2 6084 | . . . . . . 7 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) |
| 6 | id 22 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋) | |
| 7 | elfvdm 6943 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
| 8 | ssexg 5323 | . . . . . . . . . . 11 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝑆 ∈ V) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ V) |
| 10 | nnex 12272 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
| 11 | elmapg 8879 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) |
| 13 | 12 | anbi1d 631 | . . . . . . . 8 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 14 | 13 | exbidv 1921 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 15 | 5, 14 | bitr2id 284 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)))) |
| 16 | 15 | imbi1d 341 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
| 17 | 3, 16 | bitrid 283 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
| 18 | 17 | albidv 1920 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
| 19 | df-ss 3968 | . . 3 ⊢ (((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆)) | |
| 20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
| 21 | 2, 20 | bitrd 279 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 dom cdm 5685 “ cima 5688 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ℕcn 12266 ∞Metcxmet 21349 MetOpencmopn 21354 Clsdccld 23024 ⇝𝑡clm 23234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-fz 13548 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-lm 23237 df-1stc 23447 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |