Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metcld2 | Structured version Visualization version GIF version |
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
metcld.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
metcld2 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcld.2 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | metcld 24460 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
3 | 19.23v 1949 | . . . . 5 ⊢ (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆)) | |
4 | vex 3435 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 5973 | . . . . . . 7 ⊢ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥)) |
6 | id 22 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋) | |
7 | elfvdm 6801 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
8 | ssexg 5251 | . . . . . . . . . . 11 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ dom ∞Met) → 𝑆 ∈ V) | |
9 | 6, 7, 8 | syl2anr 597 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ V) |
10 | nnex 11971 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
11 | elmapg 8603 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) | |
12 | 9, 10, 11 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑓 ∈ (𝑆 ↑m ℕ) ↔ 𝑓:ℕ⟶𝑆)) |
13 | 12 | anbi1d 630 | . . . . . . . 8 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
14 | 13 | exbidv 1928 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓 ∈ (𝑆 ↑m ℕ) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
15 | 5, 14 | bitr2id 284 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)))) |
16 | 15 | imbi1d 342 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
17 | 3, 16 | syl5bb 283 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
18 | 17 | albidv 1927 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆))) |
19 | dfss2 3912 | . . 3 ⊢ (((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) → 𝑥 ∈ 𝑆)) | |
20 | 18, 19 | bitr4di 289 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
21 | 2, 20 | bitrd 278 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡‘𝐽) “ (𝑆 ↑m ℕ)) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 class class class wbr 5079 dom cdm 5589 “ cima 5592 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 ↑m cmap 8590 ℕcn 11965 ∞Metcxmet 20572 MetOpencmopn 20577 Clsdccld 22157 ⇝𝑡clm 22367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 ax-cc 10184 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-map 8592 df-pm 8593 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-sup 9171 df-inf 9172 df-card 9690 df-acn 9693 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-n0 12226 df-z 12312 df-uz 12574 df-q 12680 df-rp 12722 df-xneg 12839 df-xadd 12840 df-xmul 12841 df-fz 13231 df-topgen 17144 df-psmet 20579 df-xmet 20580 df-bl 20582 df-mopn 20583 df-top 22033 df-topon 22050 df-bases 22086 df-cld 22160 df-ntr 22161 df-cls 22162 df-lm 22370 df-1stc 22580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |