Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Structured version   Visualization version   GIF version

Theorem metcld2 23918
 Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcld2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))

Proof of Theorem metcld2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcld.2 . . 3 𝐽 = (MetOpen‘𝐷)
21metcld 23917 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
3 19.23v 1943 . . . . 5 (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆))
4 vex 3444 . . . . . . . 8 𝑥 ∈ V
54elima2 5902 . . . . . . 7 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
6 id 22 . . . . . . . . . . 11 (𝑆𝑋𝑆𝑋)
7 elfvdm 6677 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8 ssexg 5191 . . . . . . . . . . 11 ((𝑆𝑋𝑋 ∈ dom ∞Met) → 𝑆 ∈ V)
96, 7, 8syl2anr 599 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ V)
10 nnex 11633 . . . . . . . . . 10 ℕ ∈ V
11 elmapg 8404 . . . . . . . . . 10 ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
129, 10, 11sylancl 589 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
1312anbi1d 632 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
1413exbidv 1922 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
155, 14syl5rbb 287 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ))))
1615imbi1d 345 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
173, 16syl5bb 286 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
1817albidv 1921 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
19 dfss2 3901 . . 3 (((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆))
2018, 19bitr4di 292 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
212, 20bitrd 282 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3441   ⊆ wss 3881   class class class wbr 5030  dom cdm 5519   “ cima 5522  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391  ℕcn 11627  ∞Metcxmet 20079  MetOpencmopn 20084  Clsdccld 21628  ⇝𝑡clm 21838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cc 9848  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-card 9354  df-acn 9357  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-n0 11888  df-z 11972  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-fz 12888  df-topgen 16711  df-psmet 20086  df-xmet 20087  df-bl 20089  df-mopn 20090  df-top 21506  df-topon 21523  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-lm 21841  df-1stc 22051 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator