MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Structured version   Visualization version   GIF version

Theorem metcld2 25207
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcld2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))

Proof of Theorem metcld2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcld.2 . . 3 𝐽 = (MetOpen‘𝐷)
21metcld 25206 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
3 19.23v 1942 . . . . 5 (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆))
4 vex 3451 . . . . . . . 8 𝑥 ∈ V
54elima2 6037 . . . . . . 7 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
6 id 22 . . . . . . . . . . 11 (𝑆𝑋𝑆𝑋)
7 elfvdm 6895 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8 ssexg 5278 . . . . . . . . . . 11 ((𝑆𝑋𝑋 ∈ dom ∞Met) → 𝑆 ∈ V)
96, 7, 8syl2anr 597 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ V)
10 nnex 12192 . . . . . . . . . 10 ℕ ∈ V
11 elmapg 8812 . . . . . . . . . 10 ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
129, 10, 11sylancl 586 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑓 ∈ (𝑆m ℕ) ↔ 𝑓:ℕ⟶𝑆))
1312anbi1d 631 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
1413exbidv 1921 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓 ∈ (𝑆m ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
155, 14bitr2id 284 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ))))
1615imbi1d 341 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
173, 16bitrid 283 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
1817albidv 1920 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆)))
19 df-ss 3931 . . 3 (((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆m ℕ)) → 𝑥𝑆))
2018, 19bitr4di 289 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
212, 20bitrd 279 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆m ℕ)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  dom cdm 5638  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cn 12186  ∞Metcxmet 21249  MetOpencmopn 21254  Clsdccld 22903  𝑡clm 23113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-lm 23116  df-1stc 23326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator