![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elima3 | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima3 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elima2 6063 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
3 | df-br 5143 | . . . 4 ⊢ (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵) | |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
5 | 4 | exbii 1843 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 Vcvv 3469 ⟨cop 4630 class class class wbr 5142 “ cima 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 |
This theorem is referenced by: cnvresima 6228 imaiun 7249 1stpreimas 32479 elima4 35361 imaiun1 43053 snhesn 43188 |
Copyright terms: Public domain | W3C validator |