MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima3 Structured version   Visualization version   GIF version

Theorem elima3 6041
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima3 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima3
StepHypRef Expression
1 elima.1 . . 3 𝐴 ∈ V
21elima2 6040 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
3 df-br 5111 . . . 4 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43anbi2i 623 . . 3 ((𝑥𝐶𝑥𝐵𝐴) ↔ (𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
54exbii 1848 . 2 (∃𝑥(𝑥𝐶𝑥𝐵𝐴) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
62, 5bitri 275 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  cnvresima  6206  imaiun  7222  1stpreimas  32636  elima4  35770  imaiun1  43647  snhesn  43782
  Copyright terms: Public domain W3C validator