| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elima3 | Structured version Visualization version GIF version | ||
| Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| elima.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elima3 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elima2 6053 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
| 3 | df-br 5120 | . . . 4 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 〈cop 4607 class class class wbr 5119 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: cnvresima 6219 imaiun 7237 1stpreimas 32683 elima4 35793 imaiun1 43675 snhesn 43810 |
| Copyright terms: Public domain | W3C validator |