MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima3 Structured version   Visualization version   GIF version

Theorem elima3 6056
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima3 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima3
StepHypRef Expression
1 elima.1 . . 3 𝐴 ∈ V
21elima2 6055 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
3 df-br 5139 . . . 4 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43anbi2i 622 . . 3 ((𝑥𝐶𝑥𝐵𝐴) ↔ (𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
54exbii 1842 . 2 (∃𝑥(𝑥𝐶𝑥𝐵𝐴) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
62, 5bitri 275 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1773  wcel 2098  Vcvv 3466  cop 4626   class class class wbr 5138  cima 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679
This theorem is referenced by:  cnvresima  6219  imaiun  7236  1stpreimas  32396  elima4  35242  imaiun1  42891  snhesn  43026
  Copyright terms: Public domain W3C validator