![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elima3 | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima3 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elima2 6065 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
3 | df-br 5149 | . . . 4 ⊢ (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵) | |
4 | 3 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
5 | 4 | exbii 1850 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 class class class wbr 5148 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: cnvresima 6229 imaiun 7243 1stpreimas 31922 elima4 34742 imaiun1 42392 snhesn 42527 |
Copyright terms: Public domain | W3C validator |