Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elima3 | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima3 | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elima2 5964 | . 2 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) |
3 | df-br 5071 | . . . 4 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
5 | 4 | exbii 1851 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: cnvresima 6122 imaiun 7100 1stpreimas 30940 elima4 33656 imaiun1 41148 snhesn 41283 |
Copyright terms: Public domain | W3C validator |