| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaiun | Structured version Visualization version GIF version | ||
| Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| imaiun | ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3259 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima3 6016 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 4 | 3 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 5 | eliun 4945 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 7 | r19.41v 3162 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 9 | 8 | exbii 1849 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) |
| 11 | 2 | elima3 6016 | . . 3 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ ∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 12 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶)) |
| 14 | 13 | eqriv 2728 | 1 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 〈cop 4582 ∪ ciun 4941 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-iun 4943 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: imauni 7180 uniqs 8698 hsmexlem4 10320 hsmexlem5 10321 xkococnlem 23575 ismbf3d 25583 mbfimaopnlem 25584 i1fima 25607 i1fd 25610 itg1addlem5 25629 limciun 25823 sibfof 34351 eulerpartlemgh 34389 poimirlem30 37696 itg2addnclem2 37718 ftc1anclem6 37744 smfresal 46832 |
| Copyright terms: Public domain | W3C validator |