MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Structured version   Visualization version   GIF version

Theorem imaiun 7219
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem imaiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3264 . . . 4 (∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
2 vex 3451 . . . . . 6 𝑦 ∈ V
32elima3 6038 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
43rexbii 3076 . . . 4 (∃𝑥𝐵 𝑦 ∈ (𝐴𝐶) ↔ ∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 eliun 4959 . . . . . . 7 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
65anbi1i 624 . . . . . 6 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
7 r19.41v 3167 . . . . . 6 (∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
86, 7bitr4i 278 . . . . 5 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
98exbii 1848 . . . 4 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
101, 4, 93bitr4ri 304 . . 3 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
112elima3 6038 . . 3 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ ∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
12 eliun 4959 . . 3 (𝑦 𝑥𝐵 (𝐴𝐶) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
1310, 11, 123bitr4i 303 . 2 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ 𝑦 𝑥𝐵 (𝐴𝐶))
1413eqriv 2726 1 (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cop 4595   ciun 4955  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-iun 4957  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  imauni  7220  uniqs  8747  hsmexlem4  10382  hsmexlem5  10383  xkococnlem  23546  ismbf3d  25555  mbfimaopnlem  25556  i1fima  25579  i1fd  25582  itg1addlem5  25601  limciun  25795  sibfof  34331  eulerpartlemgh  34369  poimirlem30  37644  itg2addnclem2  37666  ftc1anclem6  37692  smfresal  46786
  Copyright terms: Public domain W3C validator