Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaiun | Structured version Visualization version GIF version |
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
imaiun | ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3233 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elima3 5976 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
4 | 3 | rexbii 3181 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
5 | eliun 4928 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶) | |
6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
7 | r19.41v 3276 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
8 | 6, 7 | bitr4i 277 | . . . . 5 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
9 | 8 | exbii 1850 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) |
11 | 2 | elima3 5976 | . . 3 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ ∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
12 | eliun 4928 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) | |
13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶)) |
14 | 13 | eqriv 2735 | 1 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 〈cop 4567 ∪ ciun 4924 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: imauni 7119 uniqs 8566 hsmexlem4 10185 hsmexlem5 10186 xkococnlem 22810 ismbf3d 24818 mbfimaopnlem 24819 i1fima 24842 i1fd 24845 itg1addlem5 24865 limciun 25058 sibfof 32307 eulerpartlemgh 32345 poimirlem30 35807 itg2addnclem2 35829 ftc1anclem6 35855 uniqsALTV 36464 smfresal 44322 |
Copyright terms: Public domain | W3C validator |