MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Structured version   Visualization version   GIF version

Theorem imaiun 7264
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem imaiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3285 . . . 4 (∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
2 vex 3481 . . . . . 6 𝑦 ∈ V
32elima3 6086 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
43rexbii 3091 . . . 4 (∃𝑥𝐵 𝑦 ∈ (𝐴𝐶) ↔ ∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 eliun 4999 . . . . . . 7 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
65anbi1i 624 . . . . . 6 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
7 r19.41v 3186 . . . . . 6 (∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
86, 7bitr4i 278 . . . . 5 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
98exbii 1844 . . . 4 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
101, 4, 93bitr4ri 304 . . 3 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
112elima3 6086 . . 3 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ ∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
12 eliun 4999 . . 3 (𝑦 𝑥𝐵 (𝐴𝐶) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
1310, 11, 123bitr4i 303 . 2 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ 𝑦 𝑥𝐵 (𝐴𝐶))
1413eqriv 2731 1 (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wex 1775  wcel 2105  wrex 3067  cop 4636   ciun 4995  cima 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-11 2154  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4997  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701
This theorem is referenced by:  imauni  7265  uniqs  8815  hsmexlem4  10466  hsmexlem5  10467  xkococnlem  23682  ismbf3d  25702  mbfimaopnlem  25703  i1fima  25726  i1fd  25729  itg1addlem5  25749  limciun  25943  sibfof  34321  eulerpartlemgh  34359  poimirlem30  37636  itg2addnclem2  37658  ftc1anclem6  37684  uniqsALTV  38310  smfresal  46743
  Copyright terms: Public domain W3C validator