| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaiun | Structured version Visualization version GIF version | ||
| Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| imaiun | ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3265 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima3 6041 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 4 | 3 | rexbii 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 5 | eliun 4962 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 7 | r19.41v 3168 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) |
| 11 | 2 | elima3 6041 | . . 3 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ ∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 12 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶)) |
| 14 | 13 | eqriv 2727 | 1 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 〈cop 4598 ∪ ciun 4958 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: imauni 7223 uniqs 8750 hsmexlem4 10389 hsmexlem5 10390 xkococnlem 23553 ismbf3d 25562 mbfimaopnlem 25563 i1fima 25586 i1fd 25589 itg1addlem5 25608 limciun 25802 sibfof 34338 eulerpartlemgh 34376 poimirlem30 37651 itg2addnclem2 37673 ftc1anclem6 37699 smfresal 46793 |
| Copyright terms: Public domain | W3C validator |