Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreimas Structured version   Visualization version   GIF version

Theorem 1stpreimas 31038
Description: The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Assertion
Ref Expression
1stpreimas ((Rel 𝐴𝑋𝑉) → ((1st𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋})))

Proof of Theorem 1stpreimas
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1st2ndb 7871 . . . . . . . . 9 (𝑧 ∈ (V × V) ↔ 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
21biimpi 215 . . . . . . . 8 (𝑧 ∈ (V × V) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
32ad2antrl 725 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
4 fvex 6787 . . . . . . . . . . . 12 (1st𝑧) ∈ V
54elsn 4576 . . . . . . . . . . 11 ((1st𝑧) ∈ {𝑋} ↔ (1st𝑧) = 𝑋)
65biimpi 215 . . . . . . . . . 10 ((1st𝑧) ∈ {𝑋} → (1st𝑧) = 𝑋)
76ad2antrl 725 . . . . . . . . 9 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))) → (1st𝑧) = 𝑋)
87adantl 482 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (1st𝑧) = 𝑋)
98opeq1d 4810 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
103, 9eqtrd 2778 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = ⟨𝑋, (2nd𝑧)⟩)
11 simplr 766 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑋𝑉)
12 simprrr 779 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (2nd𝑧) ∈ (𝐴 “ {𝑋}))
13 elimasng 5996 . . . . . . . 8 ((𝑋𝑉 ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) → ((2nd𝑧) ∈ (𝐴 “ {𝑋}) ↔ ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴))
1413biimpa 477 . . . . . . 7 (((𝑋𝑉 ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
1511, 12, 12, 14syl21anc 835 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
1610, 15eqeltrd 2839 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧𝐴)
17 fvres 6793 . . . . . . 7 (𝑧𝐴 → ((1st𝐴)‘𝑧) = (1st𝑧))
1816, 17syl 17 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st𝐴)‘𝑧) = (1st𝑧))
1918, 8eqtrd 2778 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st𝐴)‘𝑧) = 𝑋)
2016, 19jca 512 . . . 4 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋))
21 df-rel 5596 . . . . . . . . 9 (Rel 𝐴𝐴 ⊆ (V × V))
2221biimpi 215 . . . . . . . 8 (Rel 𝐴𝐴 ⊆ (V × V))
2322adantr 481 . . . . . . 7 ((Rel 𝐴𝑋𝑉) → 𝐴 ⊆ (V × V))
2423sselda 3921 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ 𝑧𝐴) → 𝑧 ∈ (V × V))
2524adantrr 714 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 ∈ (V × V))
2617ad2antrl 725 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝐴)‘𝑧) = (1st𝑧))
27 simprr 770 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝐴)‘𝑧) = 𝑋)
2826, 27eqtr3d 2780 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (1st𝑧) = 𝑋)
2928, 5sylibr 233 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (1st𝑧) ∈ {𝑋})
3028, 29eqeltrrd 2840 . . . . . . . . 9 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑋 ∈ {𝑋})
31 simpr 485 . . . . . . . . . . 11 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
3231opeq1d 4810 . . . . . . . . . 10 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → ⟨𝑥, (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
3332eleq1d 2823 . . . . . . . . 9 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → (⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴 ↔ ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴))
34 1st2nd 7880 . . . . . . . . . . . 12 ((Rel 𝐴𝑧𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3534ad2ant2r 744 . . . . . . . . . . 11 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3628opeq1d 4810 . . . . . . . . . . 11 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
3735, 36eqtrd 2778 . . . . . . . . . 10 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 = ⟨𝑋, (2nd𝑧)⟩)
38 simprl 768 . . . . . . . . . 10 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧𝐴)
3937, 38eqeltrrd 2840 . . . . . . . . 9 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
4030, 33, 39rspcedvd 3563 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ∃𝑥 ∈ {𝑋}⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴)
41 df-rex 3070 . . . . . . . 8 (∃𝑥 ∈ {𝑋}⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
4240, 41sylib 217 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
43 fvex 6787 . . . . . . . 8 (2nd𝑧) ∈ V
4443elima3 5976 . . . . . . 7 ((2nd𝑧) ∈ (𝐴 “ {𝑋}) ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
4542, 44sylibr 233 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (2nd𝑧) ∈ (𝐴 “ {𝑋}))
4629, 45jca 512 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))
4725, 46jca 512 . . . 4 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))))
4820, 47impbida 798 . . 3 ((Rel 𝐴𝑋𝑉) → ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
49 elxp7 7866 . . . 4 (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))))
5049a1i 11 . . 3 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))))
51 fo1st 7851 . . . . . . 7 1st :V–onto→V
52 fofn 6690 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
5351, 52ax-mp 5 . . . . . 6 1st Fn V
54 ssv 3945 . . . . . 6 𝐴 ⊆ V
55 fnssres 6555 . . . . . 6 ((1st Fn V ∧ 𝐴 ⊆ V) → (1st𝐴) Fn 𝐴)
5653, 54, 55mp2an 689 . . . . 5 (1st𝐴) Fn 𝐴
57 fniniseg 6937 . . . . 5 ((1st𝐴) Fn 𝐴 → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
5856, 57ax-mp 5 . . . 4 (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋))
5958a1i 11 . . 3 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
6048, 50, 593bitr4rd 312 . 2 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ 𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋}))))
6160eqrdv 2736 1 ((Rel 𝐴𝑋𝑉) → ((1st𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  wss 3887  {csn 4561  cop 4567   × cxp 5587  ccnv 5588  cres 5591  cima 5592  Rel wrel 5594   Fn wfn 6428  ontowfo 6431  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  gsummpt2d  31309
  Copyright terms: Public domain W3C validator