| Step | Hyp | Ref
| Expression |
| 1 | | 1st2ndb 8055 |
. . . . . . . . 9
⊢ (𝑧 ∈ (V × V) ↔
𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
| 2 | 1 | biimpi 216 |
. . . . . . . 8
⊢ (𝑧 ∈ (V × V) →
𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
| 3 | 2 | ad2antrl 728 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 4 | | fvex 6918 |
. . . . . . . . . . . 12
⊢
(1st ‘𝑧) ∈ V |
| 5 | 4 | elsn 4640 |
. . . . . . . . . . 11
⊢
((1st ‘𝑧) ∈ {𝑋} ↔ (1st ‘𝑧) = 𝑋) |
| 6 | 5 | biimpi 216 |
. . . . . . . . . 10
⊢
((1st ‘𝑧) ∈ {𝑋} → (1st ‘𝑧) = 𝑋) |
| 7 | 6 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (V × V) ∧
((1st ‘𝑧)
∈ {𝑋} ∧
(2nd ‘𝑧)
∈ (𝐴 “ {𝑋}))) → (1st
‘𝑧) = 𝑋) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → (1st ‘𝑧) = 𝑋) |
| 9 | 8 | opeq1d 4878 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 〈(1st
‘𝑧), (2nd
‘𝑧)〉 =
〈𝑋, (2nd
‘𝑧)〉) |
| 10 | 3, 9 | eqtrd 2776 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = 〈𝑋, (2nd ‘𝑧)〉) |
| 11 | | simplr 768 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑋 ∈ 𝑉) |
| 12 | | simprrr 781 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → (2nd ‘𝑧) ∈ (𝐴 “ {𝑋})) |
| 13 | | elimasng 6106 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (2nd ‘𝑧) ∈ (𝐴 “ {𝑋})) → ((2nd ‘𝑧) ∈ (𝐴 “ {𝑋}) ↔ 〈𝑋, (2nd ‘𝑧)〉 ∈ 𝐴)) |
| 14 | 13 | biimpa 476 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ (2nd ‘𝑧) ∈ (𝐴 “ {𝑋})) ∧ (2nd ‘𝑧) ∈ (𝐴 “ {𝑋})) → 〈𝑋, (2nd ‘𝑧)〉 ∈ 𝐴) |
| 15 | 11, 12, 12, 14 | syl21anc 837 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 〈𝑋, (2nd ‘𝑧)〉 ∈ 𝐴) |
| 16 | 10, 15 | eqeltrd 2840 |
. . . . 5
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 ∈ 𝐴) |
| 17 | | fvres 6924 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → ((1st ↾ 𝐴)‘𝑧) = (1st ‘𝑧)) |
| 18 | 16, 17 | syl 17 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st ↾ 𝐴)‘𝑧) = (1st ‘𝑧)) |
| 19 | 18, 8 | eqtrd 2776 |
. . . . 5
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st ↾ 𝐴)‘𝑧) = 𝑋) |
| 20 | 16, 19 | jca 511 |
. . . 4
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) → (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) |
| 21 | | df-rel 5691 |
. . . . . . . . 9
⊢ (Rel
𝐴 ↔ 𝐴 ⊆ (V × V)) |
| 22 | 21 | biimpi 216 |
. . . . . . . 8
⊢ (Rel
𝐴 → 𝐴 ⊆ (V × V)) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → 𝐴 ⊆ (V × V)) |
| 24 | 23 | sselda 3982 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (V × V)) |
| 25 | 24 | adantrr 717 |
. . . . 5
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 𝑧 ∈ (V × V)) |
| 26 | 17 | ad2antrl 728 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → ((1st ↾ 𝐴)‘𝑧) = (1st ‘𝑧)) |
| 27 | | simprr 772 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → ((1st ↾ 𝐴)‘𝑧) = 𝑋) |
| 28 | 26, 27 | eqtr3d 2778 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → (1st ‘𝑧) = 𝑋) |
| 29 | 28, 5 | sylibr 234 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → (1st ‘𝑧) ∈ {𝑋}) |
| 30 | 28, 29 | eqeltrrd 2841 |
. . . . . . . . 9
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 𝑋 ∈ {𝑋}) |
| 31 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
| 32 | 31 | opeq1d 4878 |
. . . . . . . . . 10
⊢ ((((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → 〈𝑥, (2nd ‘𝑧)〉 = 〈𝑋, (2nd ‘𝑧)〉) |
| 33 | 32 | eleq1d 2825 |
. . . . . . . . 9
⊢ ((((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → (〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴 ↔ 〈𝑋, (2nd ‘𝑧)〉 ∈ 𝐴)) |
| 34 | | 1st2nd 8065 |
. . . . . . . . . . . 12
⊢ ((Rel
𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 35 | 34 | ad2ant2r 747 |
. . . . . . . . . . 11
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 36 | 28 | opeq1d 4878 |
. . . . . . . . . . 11
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈𝑋, (2nd ‘𝑧)〉) |
| 37 | 35, 36 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 𝑧 = 〈𝑋, (2nd ‘𝑧)〉) |
| 38 | | simprl 770 |
. . . . . . . . . 10
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 𝑧 ∈ 𝐴) |
| 39 | 37, 38 | eqeltrrd 2841 |
. . . . . . . . 9
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → 〈𝑋, (2nd ‘𝑧)〉 ∈ 𝐴) |
| 40 | 30, 33, 39 | rspcedvd 3623 |
. . . . . . . 8
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → ∃𝑥 ∈ {𝑋}〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴) |
| 41 | | df-rex 3070 |
. . . . . . . 8
⊢
(∃𝑥 ∈
{𝑋}〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ 〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴)) |
| 42 | 40, 41 | sylib 218 |
. . . . . . 7
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → ∃𝑥(𝑥 ∈ {𝑋} ∧ 〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴)) |
| 43 | | fvex 6918 |
. . . . . . . 8
⊢
(2nd ‘𝑧) ∈ V |
| 44 | 43 | elima3 6084 |
. . . . . . 7
⊢
((2nd ‘𝑧) ∈ (𝐴 “ {𝑋}) ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ 〈𝑥, (2nd ‘𝑧)〉 ∈ 𝐴)) |
| 45 | 42, 44 | sylibr 234 |
. . . . . 6
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → (2nd ‘𝑧) ∈ (𝐴 “ {𝑋})) |
| 46 | 29, 45 | jca 511 |
. . . . 5
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → ((1st ‘𝑧) ∈ {𝑋} ∧ (2nd ‘𝑧) ∈ (𝐴 “ {𝑋}))) |
| 47 | 25, 46 | jca 511 |
. . . 4
⊢ (((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) ∧ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) → (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) |
| 48 | 20, 47 | impbida 800 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → ((𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋}))) ↔ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋))) |
| 49 | | elxp7 8050 |
. . . 4
⊢ (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋})))) |
| 50 | 49 | a1i 11 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ {𝑋} ∧ (2nd
‘𝑧) ∈ (𝐴 “ {𝑋}))))) |
| 51 | | fo1st 8035 |
. . . . . . 7
⊢
1st :V–onto→V |
| 52 | | fofn 6821 |
. . . . . . 7
⊢
(1st :V–onto→V → 1st Fn V) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . 6
⊢
1st Fn V |
| 54 | | ssv 4007 |
. . . . . 6
⊢ 𝐴 ⊆ V |
| 55 | | fnssres 6690 |
. . . . . 6
⊢
((1st Fn V ∧ 𝐴 ⊆ V) → (1st ↾
𝐴) Fn 𝐴) |
| 56 | 53, 54, 55 | mp2an 692 |
. . . . 5
⊢
(1st ↾ 𝐴) Fn 𝐴 |
| 57 | | fniniseg 7079 |
. . . . 5
⊢
((1st ↾ 𝐴) Fn 𝐴 → (𝑧 ∈ (◡(1st ↾ 𝐴) “ {𝑋}) ↔ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋))) |
| 58 | 56, 57 | ax-mp 5 |
. . . 4
⊢ (𝑧 ∈ (◡(1st ↾ 𝐴) “ {𝑋}) ↔ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋)) |
| 59 | 58 | a1i 11 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑧 ∈ (◡(1st ↾ 𝐴) “ {𝑋}) ↔ (𝑧 ∈ 𝐴 ∧ ((1st ↾ 𝐴)‘𝑧) = 𝑋))) |
| 60 | 48, 50, 59 | 3bitr4rd 312 |
. 2
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → (𝑧 ∈ (◡(1st ↾ 𝐴) “ {𝑋}) ↔ 𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})))) |
| 61 | 60 | eqrdv 2734 |
1
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝑉) → (◡(1st ↾ 𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋}))) |