Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreimas Structured version   Visualization version   GIF version

Theorem 1stpreimas 32716
Description: The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Assertion
Ref Expression
1stpreimas ((Rel 𝐴𝑋𝑉) → ((1st𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋})))

Proof of Theorem 1stpreimas
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1st2ndb 8055 . . . . . . . . 9 (𝑧 ∈ (V × V) ↔ 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
21biimpi 216 . . . . . . . 8 (𝑧 ∈ (V × V) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
32ad2antrl 728 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
4 fvex 6918 . . . . . . . . . . . 12 (1st𝑧) ∈ V
54elsn 4640 . . . . . . . . . . 11 ((1st𝑧) ∈ {𝑋} ↔ (1st𝑧) = 𝑋)
65biimpi 216 . . . . . . . . . 10 ((1st𝑧) ∈ {𝑋} → (1st𝑧) = 𝑋)
76ad2antrl 728 . . . . . . . . 9 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))) → (1st𝑧) = 𝑋)
87adantl 481 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (1st𝑧) = 𝑋)
98opeq1d 4878 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
103, 9eqtrd 2776 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧 = ⟨𝑋, (2nd𝑧)⟩)
11 simplr 768 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑋𝑉)
12 simprrr 781 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (2nd𝑧) ∈ (𝐴 “ {𝑋}))
13 elimasng 6106 . . . . . . . 8 ((𝑋𝑉 ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) → ((2nd𝑧) ∈ (𝐴 “ {𝑋}) ↔ ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴))
1413biimpa 476 . . . . . . 7 (((𝑋𝑉 ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
1511, 12, 12, 14syl21anc 837 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
1610, 15eqeltrd 2840 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → 𝑧𝐴)
17 fvres 6924 . . . . . . 7 (𝑧𝐴 → ((1st𝐴)‘𝑧) = (1st𝑧))
1816, 17syl 17 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st𝐴)‘𝑧) = (1st𝑧))
1918, 8eqtrd 2776 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → ((1st𝐴)‘𝑧) = 𝑋)
2016, 19jca 511 . . . 4 (((Rel 𝐴𝑋𝑉) ∧ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))) → (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋))
21 df-rel 5691 . . . . . . . . 9 (Rel 𝐴𝐴 ⊆ (V × V))
2221biimpi 216 . . . . . . . 8 (Rel 𝐴𝐴 ⊆ (V × V))
2322adantr 480 . . . . . . 7 ((Rel 𝐴𝑋𝑉) → 𝐴 ⊆ (V × V))
2423sselda 3982 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ 𝑧𝐴) → 𝑧 ∈ (V × V))
2524adantrr 717 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 ∈ (V × V))
2617ad2antrl 728 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝐴)‘𝑧) = (1st𝑧))
27 simprr 772 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝐴)‘𝑧) = 𝑋)
2826, 27eqtr3d 2778 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (1st𝑧) = 𝑋)
2928, 5sylibr 234 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (1st𝑧) ∈ {𝑋})
3028, 29eqeltrrd 2841 . . . . . . . . 9 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑋 ∈ {𝑋})
31 simpr 484 . . . . . . . . . . 11 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
3231opeq1d 4878 . . . . . . . . . 10 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → ⟨𝑥, (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
3332eleq1d 2825 . . . . . . . . 9 ((((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) ∧ 𝑥 = 𝑋) → (⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴 ↔ ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴))
34 1st2nd 8065 . . . . . . . . . . . 12 ((Rel 𝐴𝑧𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3534ad2ant2r 747 . . . . . . . . . . 11 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3628opeq1d 4878 . . . . . . . . . . 11 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨𝑋, (2nd𝑧)⟩)
3735, 36eqtrd 2776 . . . . . . . . . 10 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧 = ⟨𝑋, (2nd𝑧)⟩)
38 simprl 770 . . . . . . . . . 10 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → 𝑧𝐴)
3937, 38eqeltrrd 2841 . . . . . . . . 9 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ⟨𝑋, (2nd𝑧)⟩ ∈ 𝐴)
4030, 33, 39rspcedvd 3623 . . . . . . . 8 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ∃𝑥 ∈ {𝑋}⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴)
41 df-rex 3070 . . . . . . . 8 (∃𝑥 ∈ {𝑋}⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
4240, 41sylib 218 . . . . . . 7 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
43 fvex 6918 . . . . . . . 8 (2nd𝑧) ∈ V
4443elima3 6084 . . . . . . 7 ((2nd𝑧) ∈ (𝐴 “ {𝑋}) ↔ ∃𝑥(𝑥 ∈ {𝑋} ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐴))
4542, 44sylibr 234 . . . . . 6 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (2nd𝑧) ∈ (𝐴 “ {𝑋}))
4629, 45jca 511 . . . . 5 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))
4725, 46jca 511 . . . 4 (((Rel 𝐴𝑋𝑉) ∧ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))))
4820, 47impbida 800 . . 3 ((Rel 𝐴𝑋𝑉) → ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
49 elxp7 8050 . . . 4 (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋}))))
5049a1i 11 . . 3 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋})) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ {𝑋} ∧ (2nd𝑧) ∈ (𝐴 “ {𝑋})))))
51 fo1st 8035 . . . . . . 7 1st :V–onto→V
52 fofn 6821 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
5351, 52ax-mp 5 . . . . . 6 1st Fn V
54 ssv 4007 . . . . . 6 𝐴 ⊆ V
55 fnssres 6690 . . . . . 6 ((1st Fn V ∧ 𝐴 ⊆ V) → (1st𝐴) Fn 𝐴)
5653, 54, 55mp2an 692 . . . . 5 (1st𝐴) Fn 𝐴
57 fniniseg 7079 . . . . 5 ((1st𝐴) Fn 𝐴 → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
5856, 57ax-mp 5 . . . 4 (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋))
5958a1i 11 . . 3 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ (𝑧𝐴 ∧ ((1st𝐴)‘𝑧) = 𝑋)))
6048, 50, 593bitr4rd 312 . 2 ((Rel 𝐴𝑋𝑉) → (𝑧 ∈ ((1st𝐴) “ {𝑋}) ↔ 𝑧 ∈ ({𝑋} × (𝐴 “ {𝑋}))))
6160eqrdv 2734 1 ((Rel 𝐴𝑋𝑉) → ((1st𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wrex 3069  Vcvv 3479  wss 3950  {csn 4625  cop 4631   × cxp 5682  ccnv 5683  cres 5686  cima 5687  Rel wrel 5689   Fn wfn 6555  ontowfo 6558  cfv 6560  1st c1st 8013  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568  df-1st 8015  df-2nd 8016
This theorem is referenced by:  gsummpt2d  33053
  Copyright terms: Public domain W3C validator