Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiun1 Structured version   Visualization version   GIF version

Theorem imaiun1 42704
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
imaiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem imaiun1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3285 . . . 4 (∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
2 vex 3478 . . . . . 6 𝑦 ∈ V
32elima3 6066 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
43rexbii 3094 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
5 eliun 5001 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
65anbi2i 623 . . . . . 6 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
7 r19.42v 3190 . . . . . 6 (∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
86, 7bitr4i 277 . . . . 5 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
98exbii 1850 . . . 4 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
101, 4, 93bitr4ri 303 . . 3 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
112elima3 6066 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵))
12 eliun 5001 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
1310, 11, 123bitr4i 302 . 2 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ 𝑦 𝑥𝐴 (𝐵𝐶))
1413eqriv 2729 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  cop 4634   ciun 4997  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  trclimalb2  42779
  Copyright terms: Public domain W3C validator