| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiun1 | Structured version Visualization version GIF version | ||
| Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| imaiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3265 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima3 6041 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 4 | 3 | rexbii 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 5 | eliun 4962 | . . . . . . 7 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
| 6 | 5 | anbi2i 623 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 7 | r19.42v 3170 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) |
| 11 | 2 | elima3 6041 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 12 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶)) |
| 14 | 13 | eqriv 2727 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 〈cop 4598 ∪ ciun 4958 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: trclimalb2 43722 |
| Copyright terms: Public domain | W3C validator |