Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiun1 Structured version   Visualization version   GIF version

Theorem imaiun1 39874
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
imaiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem imaiun1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3246 . . . 4 (∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
2 vex 3495 . . . . . 6 𝑦 ∈ V
32elima3 5929 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
43rexbii 3244 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
5 eliun 4914 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
65anbi2i 622 . . . . . 6 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
7 r19.42v 3347 . . . . . 6 (∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
86, 7bitr4i 279 . . . . 5 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
98exbii 1839 . . . 4 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
101, 4, 93bitr4ri 305 . . 3 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
112elima3 5929 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵))
12 eliun 4914 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
1310, 11, 123bitr4i 304 . 2 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ 𝑦 𝑥𝐴 (𝐵𝐶))
1413eqriv 2815 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wex 1771  wcel 2105  wrex 3136  cop 4563   ciun 4910  cima 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-iun 4912  df-br 5058  df-opab 5120  df-xp 5554  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561
This theorem is referenced by:  trclimalb2  39949
  Copyright terms: Public domain W3C validator