![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiun1 | Structured version Visualization version GIF version |
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
imaiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3285 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵)) | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elima3 6066 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵)) |
4 | 3 | rexbii 3094 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵)) |
5 | eliun 5001 | . . . . . . 7 ⊢ (⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵) | |
6 | 5 | anbi2i 623 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵)) |
7 | r19.42v 3190 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵)) | |
8 | 6, 7 | bitr4i 277 | . . . . 5 ⊢ ((𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵)) |
9 | 8 | exbii 1850 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵)) |
10 | 1, 4, 9 | 3bitr4ri 303 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) |
11 | 2 | elima3 6066 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
12 | eliun 5001 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) | |
13 | 10, 11, 12 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶)) |
14 | 13 | eqriv 2729 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 ⟨cop 4634 ∪ ciun 4997 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: trclimalb2 42779 |
Copyright terms: Public domain | W3C validator |