| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiun1 | Structured version Visualization version GIF version | ||
| Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| imaiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3259 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima3 6015 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 4 | 3 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 5 | eliun 4943 | . . . . . . 7 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
| 6 | 5 | anbi2i 623 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 7 | r19.42v 3164 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 9 | 8 | exbii 1849 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
| 10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) |
| 11 | 2 | elima3 6015 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 12 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶)) |
| 14 | 13 | eqriv 2728 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 〈cop 4579 ∪ ciun 4939 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4941 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: trclimalb2 43829 |
| Copyright terms: Public domain | W3C validator |