![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiun1 | Structured version Visualization version GIF version |
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
imaiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3277 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
2 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elima3 6056 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
4 | 3 | rexbii 3086 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
5 | eliun 4991 | . . . . . . 7 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
6 | 5 | anbi2i 622 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) |
7 | r19.42v 3182 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵)) | |
8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
9 | 8 | exbii 1842 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐵)) |
10 | 1, 4, 9 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) |
11 | 2 | elima3 6056 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
12 | eliun 4991 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 “ 𝐶)) | |
13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶)) |
14 | 13 | eqriv 2721 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3062 〈cop 4626 ∪ ciun 4987 “ cima 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-iun 4989 df-br 5139 df-opab 5201 df-xp 5672 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 |
This theorem is referenced by: trclimalb2 42932 |
Copyright terms: Public domain | W3C validator |