MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelima2 Structured version   Visualization version   GIF version

Theorem fvelima2 6916
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
fvelima2 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fvelima2
StepHypRef Expression
1 elimag 6038 . . . 4 (𝐵 ∈ (𝐹𝐶) → (𝐵 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 𝑥𝐹𝐵))
21ibi 267 . . 3 (𝐵 ∈ (𝐹𝐶) → ∃𝑥𝐶 𝑥𝐹𝐵)
3 df-rex 3055 . . 3 (∃𝑥𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
42, 3sylib 218 . 2 (𝐵 ∈ (𝐹𝐶) → ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
5 fnbr 6629 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → 𝑥𝐴)
65adantrl 716 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐴)
7 simprl 770 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐶)
86, 7elind 4166 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴𝐶))
9 fnfun 6621 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
10 funbrfv 6912 . . . . . . . . . 10 (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹𝑥) = 𝐵))
1110imp 406 . . . . . . . . 9 ((Fun 𝐹𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
129, 11sylan 580 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
1312adantrl 716 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝐹𝑥) = 𝐵)
148, 13jca 511 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1514ex 412 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐶𝑥𝐹𝐵) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1615eximdv 1917 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥(𝑥𝐶𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1716imp 406 . . 3 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
18 df-rex 3055 . . 3 (∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1917, 18sylibr 234 . 2 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
204, 19sylan2 593 1 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  cin 3916   class class class wbr 5110  cima 5644  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  exsslsb  33599  limsupresxr  45771  liminfresxr  45772  liminfvalxr  45788
  Copyright terms: Public domain W3C validator