![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelima2 | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
fvelima2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 6018 | . . . 4 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → (𝐵 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵)) | |
2 | 1 | ibi 267 | . . 3 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵) |
3 | df-rex 3075 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) |
5 | fnbr 6611 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → 𝑥 ∈ 𝐴) | |
6 | 5 | adantrl 715 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐴) |
7 | simprl 770 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐶) | |
8 | 6, 7 | elind 4155 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴 ∩ 𝐶)) |
9 | fnfun 6603 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
10 | funbrfv 6894 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹‘𝑥) = 𝐵)) | |
11 | 10 | imp 408 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
12 | 9, 11 | sylan 581 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
13 | 12 | adantrl 715 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝐹‘𝑥) = 𝐵) |
14 | 8, 13 | jca 513 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
15 | 14 | ex 414 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
16 | 15 | eximdv 1921 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
17 | 16 | imp 408 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
18 | df-rex 3075 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) | |
19 | 17, 18 | sylibr 233 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
20 | 4, 19 | sylan2 594 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3074 ∩ cin 3910 class class class wbr 5106 “ cima 5637 Fun wfun 6491 Fn wfn 6492 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 |
This theorem is referenced by: limsupresxr 44014 liminfresxr 44015 liminfvalxr 44031 |
Copyright terms: Public domain | W3C validator |