| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima2 | Structured version Visualization version GIF version | ||
| Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| fvelima2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 6020 | . . . 4 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → (𝐵 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵)) | |
| 2 | 1 | ibi 267 | . . 3 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵) |
| 3 | df-rex 3058 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) |
| 5 | fnbr 6597 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → 𝑥 ∈ 𝐴) | |
| 6 | 5 | adantrl 716 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐴) |
| 7 | simprl 770 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐶) | |
| 8 | 6, 7 | elind 4149 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴 ∩ 𝐶)) |
| 9 | fnfun 6589 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 10 | funbrfv 6879 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹‘𝑥) = 𝐵)) | |
| 11 | 10 | imp 406 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
| 12 | 9, 11 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
| 13 | 12 | adantrl 716 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝐹‘𝑥) = 𝐵) |
| 14 | 8, 13 | jca 511 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
| 15 | 14 | ex 412 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
| 16 | 15 | eximdv 1918 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
| 17 | 16 | imp 406 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
| 18 | df-rex 3058 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) | |
| 19 | 17, 18 | sylibr 234 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| 20 | 4, 19 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 class class class wbr 5095 “ cima 5624 Fun wfun 6483 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: exsslsb 33681 limsupresxr 45926 liminfresxr 45927 liminfvalxr 45943 |
| Copyright terms: Public domain | W3C validator |