Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelima2 Structured version   Visualization version   GIF version

Theorem fvelima2 42806
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
fvelima2 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fvelima2
StepHypRef Expression
1 elimag 5973 . . . 4 (𝐵 ∈ (𝐹𝐶) → (𝐵 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 𝑥𝐹𝐵))
21ibi 266 . . 3 (𝐵 ∈ (𝐹𝐶) → ∃𝑥𝐶 𝑥𝐹𝐵)
3 df-rex 3070 . . 3 (∃𝑥𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
42, 3sylib 217 . 2 (𝐵 ∈ (𝐹𝐶) → ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
5 fnbr 6541 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → 𝑥𝐴)
65adantrl 713 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐴)
7 simprl 768 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐶)
86, 7elind 4128 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴𝐶))
9 fnfun 6533 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
10 funbrfv 6820 . . . . . . . . . 10 (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹𝑥) = 𝐵))
1110imp 407 . . . . . . . . 9 ((Fun 𝐹𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
129, 11sylan 580 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
1312adantrl 713 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝐹𝑥) = 𝐵)
148, 13jca 512 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1514ex 413 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐶𝑥𝐹𝐵) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1615eximdv 1920 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥(𝑥𝐶𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1716imp 407 . . 3 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
18 df-rex 3070 . . 3 (∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1917, 18sylibr 233 . 2 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
204, 19sylan2 593 1 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  cin 3886   class class class wbr 5074  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  limsupresxr  43307  liminfresxr  43308  liminfvalxr  43324
  Copyright terms: Public domain W3C validator