| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima2 | Structured version Visualization version GIF version | ||
| Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| fvelima2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 6038 | . . . 4 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → (𝐵 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵)) | |
| 2 | 1 | ibi 267 | . . 3 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵) |
| 3 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) |
| 5 | fnbr 6629 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → 𝑥 ∈ 𝐴) | |
| 6 | 5 | adantrl 716 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐴) |
| 7 | simprl 770 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐶) | |
| 8 | 6, 7 | elind 4166 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴 ∩ 𝐶)) |
| 9 | fnfun 6621 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 10 | funbrfv 6912 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹‘𝑥) = 𝐵)) | |
| 11 | 10 | imp 406 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
| 12 | 9, 11 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
| 13 | 12 | adantrl 716 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝐹‘𝑥) = 𝐵) |
| 14 | 8, 13 | jca 511 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
| 15 | 14 | ex 412 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
| 16 | 15 | eximdv 1917 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
| 17 | 16 | imp 406 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
| 18 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) | |
| 19 | 17, 18 | sylibr 234 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| 20 | 4, 19 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 class class class wbr 5110 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: exsslsb 33599 limsupresxr 45771 liminfresxr 45772 liminfvalxr 45788 |
| Copyright terms: Public domain | W3C validator |