![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelima2 | Structured version Visualization version GIF version |
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
fvelima2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 6093 | . . . 4 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → (𝐵 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵)) | |
2 | 1 | ibi 267 | . . 3 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥 ∈ 𝐶 𝑥𝐹𝐵) |
3 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) | |
4 | 2, 3 | sylib 218 | . 2 ⊢ (𝐵 ∈ (𝐹 “ 𝐶) → ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) |
5 | fnbr 6687 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → 𝑥 ∈ 𝐴) | |
6 | 5 | adantrl 715 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐴) |
7 | simprl 770 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ 𝐶) | |
8 | 6, 7 | elind 4223 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴 ∩ 𝐶)) |
9 | fnfun 6679 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
10 | funbrfv 6971 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹‘𝑥) = 𝐵)) | |
11 | 10 | imp 406 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
12 | 9, 11 | sylan 579 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝐵) → (𝐹‘𝑥) = 𝐵) |
13 | 12 | adantrl 715 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝐹‘𝑥) = 𝐵) |
14 | 8, 13 | jca 511 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
15 | 14 | ex 412 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
16 | 15 | eximdv 1916 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵))) |
17 | 16 | imp 406 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) |
18 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ 𝐶) ∧ (𝐹‘𝑥) = 𝐵)) | |
19 | 17, 18 | sylibr 234 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
20 | 4, 19 | sylan2 592 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 class class class wbr 5166 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: limsupresxr 45687 liminfresxr 45688 liminfvalxr 45704 |
Copyright terms: Public domain | W3C validator |