Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelima2 Structured version   Visualization version   GIF version

Theorem fvelima2 42695
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
fvelima2 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fvelima2
StepHypRef Expression
1 elimag 5962 . . . 4 (𝐵 ∈ (𝐹𝐶) → (𝐵 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 𝑥𝐹𝐵))
21ibi 266 . . 3 (𝐵 ∈ (𝐹𝐶) → ∃𝑥𝐶 𝑥𝐹𝐵)
3 df-rex 3069 . . 3 (∃𝑥𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
42, 3sylib 217 . 2 (𝐵 ∈ (𝐹𝐶) → ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
5 fnbr 6525 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → 𝑥𝐴)
65adantrl 712 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐴)
7 simprl 767 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐶)
86, 7elind 4124 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴𝐶))
9 fnfun 6517 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
10 funbrfv 6802 . . . . . . . . . 10 (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹𝑥) = 𝐵))
1110imp 406 . . . . . . . . 9 ((Fun 𝐹𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
129, 11sylan 579 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
1312adantrl 712 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝐹𝑥) = 𝐵)
148, 13jca 511 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1514ex 412 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐶𝑥𝐹𝐵) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1615eximdv 1921 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥(𝑥𝐶𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1716imp 406 . . 3 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
18 df-rex 3069 . . 3 (∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1917, 18sylibr 233 . 2 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
204, 19sylan2 592 1 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cin 3882   class class class wbr 5070  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  limsupresxr  43197  liminfresxr  43198  liminfvalxr  43214
  Copyright terms: Public domain W3C validator