Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvelima Structured version   Visualization version   GIF version

Theorem afvelima 44659
Description: Function value in an image, analogous to fvelima 6835. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹'''𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem afvelima
StepHypRef Expression
1 elimag 5973 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 266 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 funbrafv 44650 . . . 4 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹'''𝑥) = 𝐴))
43reximdv 3202 . . 3 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹'''𝑥) = 𝐴))
52, 4syl5 34 . 2 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 (𝐹'''𝑥) = 𝐴))
65imp 407 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹'''𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cima 5592  Fun wfun 6427  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator