Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   GIF version

Theorem opelco3 35050
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))

Proof of Theorem opelco3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-br 5148 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 relco 6106 . . . 4 Rel (𝐶𝐷)
32brrelex12i 5730 . . 3 (𝐴(𝐶𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 snprc 4720 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
5 noel 4329 . . . . . . 7 ¬ 𝐵 ∈ ∅
6 imaeq2 6054 . . . . . . . . . 10 ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅))
76imaeq2d 6058 . . . . . . . . 9 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅)))
8 ima0 6075 . . . . . . . . . . 11 (𝐷 “ ∅) = ∅
98imaeq2i 6056 . . . . . . . . . 10 (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅)
10 ima0 6075 . . . . . . . . . 10 (𝐶 “ ∅) = ∅
119, 10eqtri 2758 . . . . . . . . 9 (𝐶 “ (𝐷 “ ∅)) = ∅
127, 11eqtrdi 2786 . . . . . . . 8 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅)
1312eleq2d 2817 . . . . . . 7 ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅))
145, 13mtbiri 326 . . . . . 6 ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
154, 14sylbi 216 . . . . 5 𝐴 ∈ V → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
1615con4i 114 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V)
17 elex 3491 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V)
1816, 17jca 510 . . 3 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
19 df-rex 3069 . . . . 5 (∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵))
20 elimasng 6086 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
2120elvd 3479 . . . . . . . . 9 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
22 df-br 5148 . . . . . . . . 9 (𝐴𝐷𝑧 ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷)
2321, 22bitr4di 288 . . . . . . . 8 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2423adantr 479 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2524anbi1d 628 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧𝑧𝐶𝐵)))
2625exbidv 1922 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
2719, 26bitr2id 283 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
28 brcog 5865 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
29 elimag 6062 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3029adantl 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3127, 28, 303bitr4d 310 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))))
323, 18, 31pm5.21nii 377 . 2 (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
331, 32bitr3i 276 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104  wrex 3068  Vcvv 3472  c0 4321  {csn 4627  cop 4633   class class class wbr 5147  cima 5678  ccom 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator