Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   GIF version

Theorem opelco3 33794
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))

Proof of Theorem opelco3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-br 5082 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 relco 6026 . . . 4 Rel (𝐶𝐷)
32brrelex12i 5653 . . 3 (𝐴(𝐶𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 snprc 4657 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
5 noel 4270 . . . . . . 7 ¬ 𝐵 ∈ ∅
6 imaeq2 5975 . . . . . . . . . 10 ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅))
76imaeq2d 5979 . . . . . . . . 9 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅)))
8 ima0 5995 . . . . . . . . . . 11 (𝐷 “ ∅) = ∅
98imaeq2i 5977 . . . . . . . . . 10 (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅)
10 ima0 5995 . . . . . . . . . 10 (𝐶 “ ∅) = ∅
119, 10eqtri 2764 . . . . . . . . 9 (𝐶 “ (𝐷 “ ∅)) = ∅
127, 11eqtrdi 2792 . . . . . . . 8 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅)
1312eleq2d 2822 . . . . . . 7 ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅))
145, 13mtbiri 327 . . . . . 6 ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
154, 14sylbi 216 . . . . 5 𝐴 ∈ V → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
1615con4i 114 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V)
17 elex 3455 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V)
1816, 17jca 513 . . 3 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
19 df-rex 3072 . . . . 5 (∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵))
20 elimasng 6006 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
2120elvd 3444 . . . . . . . . 9 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
22 df-br 5082 . . . . . . . . 9 (𝐴𝐷𝑧 ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷)
2321, 22bitr4di 289 . . . . . . . 8 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2423adantr 482 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2524anbi1d 631 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧𝑧𝐶𝐵)))
2625exbidv 1922 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
2719, 26bitr2id 284 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
28 brcog 5788 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
29 elimag 5983 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3029adantl 483 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3127, 28, 303bitr4d 311 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))))
323, 18, 31pm5.21nii 380 . 2 (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
331, 32bitr3i 277 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  wrex 3071  Vcvv 3437  c0 4262  {csn 4565  cop 4571   class class class wbr 5081  cima 5603  ccom 5604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator