Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   GIF version

Theorem opelco3 32902
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))

Proof of Theorem opelco3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-br 5064 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 relco 6095 . . . 4 Rel (𝐶𝐷)
32brrelex12i 5606 . . 3 (𝐴(𝐶𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 snprc 4652 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
5 noel 4300 . . . . . . 7 ¬ 𝐵 ∈ ∅
6 imaeq2 5923 . . . . . . . . . 10 ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅))
76imaeq2d 5927 . . . . . . . . 9 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅)))
8 ima0 5943 . . . . . . . . . . 11 (𝐷 “ ∅) = ∅
98imaeq2i 5925 . . . . . . . . . 10 (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅)
10 ima0 5943 . . . . . . . . . 10 (𝐶 “ ∅) = ∅
119, 10eqtri 2849 . . . . . . . . 9 (𝐶 “ (𝐷 “ ∅)) = ∅
127, 11syl6eq 2877 . . . . . . . 8 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅)
1312eleq2d 2903 . . . . . . 7 ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅))
145, 13mtbiri 328 . . . . . 6 ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
154, 14sylbi 218 . . . . 5 𝐴 ∈ V → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
1615con4i 114 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V)
17 elex 3518 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V)
1816, 17jca 512 . . 3 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
19 df-rex 3149 . . . . 5 (∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵))
20 elimasng 5953 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
2120elvd 3506 . . . . . . . . 9 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
22 df-br 5064 . . . . . . . . 9 (𝐴𝐷𝑧 ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷)
2321, 22syl6bbr 290 . . . . . . . 8 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2423adantr 481 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2524anbi1d 629 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧𝑧𝐶𝐵)))
2625exbidv 1915 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
2719, 26syl5rbb 285 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
28 brcog 5736 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
29 elimag 5931 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3029adantl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3127, 28, 303bitr4d 312 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))))
323, 18, 31pm5.21nii 380 . 2 (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
331, 32bitr3i 278 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wrex 3144  Vcvv 3500  c0 4295  {csn 4564  cop 4570   class class class wbr 5063  cima 5557  ccom 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator