Step | Hyp | Ref
| Expression |
1 | | df-br 5036 |
. 2
⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) |
2 | | relco 6078 |
. . . 4
⊢ Rel
(𝐶 ∘ 𝐷) |
3 | 2 | brrelex12i 5580 |
. . 3
⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | | snprc 4613 |
. . . . . 6
⊢ (¬
𝐴 ∈ V ↔ {𝐴} = ∅) |
5 | | noel 4232 |
. . . . . . 7
⊢ ¬
𝐵 ∈
∅ |
6 | | imaeq2 5901 |
. . . . . . . . . 10
⊢ ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅)) |
7 | 6 | imaeq2d 5905 |
. . . . . . . . 9
⊢ ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅))) |
8 | | ima0 5921 |
. . . . . . . . . . 11
⊢ (𝐷 “ ∅) =
∅ |
9 | 8 | imaeq2i 5903 |
. . . . . . . . . 10
⊢ (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅) |
10 | | ima0 5921 |
. . . . . . . . . 10
⊢ (𝐶 “ ∅) =
∅ |
11 | 9, 10 | eqtri 2781 |
. . . . . . . . 9
⊢ (𝐶 “ (𝐷 “ ∅)) =
∅ |
12 | 7, 11 | eqtrdi 2809 |
. . . . . . . 8
⊢ ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅) |
13 | 12 | eleq2d 2837 |
. . . . . . 7
⊢ ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅)) |
14 | 5, 13 | mtbiri 330 |
. . . . . 6
⊢ ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) |
15 | 4, 14 | sylbi 220 |
. . . . 5
⊢ (¬
𝐴 ∈ V → ¬
𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) |
16 | 15 | con4i 114 |
. . . 4
⊢ (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V) |
17 | | elex 3428 |
. . . 4
⊢ (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V) |
18 | 16, 17 | jca 515 |
. . 3
⊢ (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
19 | | df-rex 3076 |
. . . . 5
⊢
(∃𝑧 ∈
(𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵)) |
20 | | elimasng 5931 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 〈𝐴, 𝑧〉 ∈ 𝐷)) |
21 | 20 | elvd 3416 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 〈𝐴, 𝑧〉 ∈ 𝐷)) |
22 | | df-br 5036 |
. . . . . . . . 9
⊢ (𝐴𝐷𝑧 ↔ 〈𝐴, 𝑧〉 ∈ 𝐷) |
23 | 21, 22 | bitr4di 292 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧)) |
24 | 23 | adantr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧)) |
25 | 24 | anbi1d 632 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧 ∧ 𝑧𝐶𝐵))) |
26 | 25 | exbidv 1922 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧 ∧ 𝑧𝐶𝐵))) |
27 | 19, 26 | syl5rbb 287 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧 ∧ 𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵)) |
28 | | brcog 5711 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧 ∧ 𝑧𝐶𝐵))) |
29 | | elimag 5909 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵)) |
30 | 29 | adantl 485 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵)) |
31 | 27, 28, 30 | 3bitr4d 314 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))) |
32 | 3, 18, 31 | pm5.21nii 383 |
. 2
⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) |
33 | 1, 32 | bitr3i 280 |
1
⊢
(〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) |