Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelco3 Structured version   Visualization version   GIF version

Theorem opelco3 35364
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
Assertion
Ref Expression
opelco3 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))

Proof of Theorem opelco3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-br 5143 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 relco 6106 . . . 4 Rel (𝐶𝐷)
32brrelex12i 5727 . . 3 (𝐴(𝐶𝐷)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 snprc 4717 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
5 noel 4326 . . . . . . 7 ¬ 𝐵 ∈ ∅
6 imaeq2 6053 . . . . . . . . . 10 ({𝐴} = ∅ → (𝐷 “ {𝐴}) = (𝐷 “ ∅))
76imaeq2d 6057 . . . . . . . . 9 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = (𝐶 “ (𝐷 “ ∅)))
8 ima0 6074 . . . . . . . . . . 11 (𝐷 “ ∅) = ∅
98imaeq2i 6055 . . . . . . . . . 10 (𝐶 “ (𝐷 “ ∅)) = (𝐶 “ ∅)
10 ima0 6074 . . . . . . . . . 10 (𝐶 “ ∅) = ∅
119, 10eqtri 2756 . . . . . . . . 9 (𝐶 “ (𝐷 “ ∅)) = ∅
127, 11eqtrdi 2784 . . . . . . . 8 ({𝐴} = ∅ → (𝐶 “ (𝐷 “ {𝐴})) = ∅)
1312eleq2d 2815 . . . . . . 7 ({𝐴} = ∅ → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ 𝐵 ∈ ∅))
145, 13mtbiri 327 . . . . . 6 ({𝐴} = ∅ → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
154, 14sylbi 216 . . . . 5 𝐴 ∈ V → ¬ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
1615con4i 114 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐴 ∈ V)
17 elex 3489 . . . 4 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → 𝐵 ∈ V)
1816, 17jca 511 . . 3 (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
19 df-rex 3067 . . . . 5 (∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵 ↔ ∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵))
20 elimasng 6086 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
2120elvd 3477 . . . . . . . . 9 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷))
22 df-br 5143 . . . . . . . . 9 (𝐴𝐷𝑧 ↔ ⟨𝐴, 𝑧⟩ ∈ 𝐷)
2321, 22bitr4di 289 . . . . . . . 8 (𝐴 ∈ V → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2423adantr 480 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝑧))
2524anbi1d 630 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ (𝐴𝐷𝑧𝑧𝐶𝐵)))
2625exbidv 1917 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝑧 ∈ (𝐷 “ {𝐴}) ∧ 𝑧𝐶𝐵) ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
2719, 26bitr2id 284 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
28 brcog 5863 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑧(𝐴𝐷𝑧𝑧𝐶𝐵)))
29 elimag 6061 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3029adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})) ↔ ∃𝑧 ∈ (𝐷 “ {𝐴})𝑧𝐶𝐵))
3127, 28, 303bitr4d 311 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))))
323, 18, 31pm5.21nii 378 . 2 (𝐴(𝐶𝐷)𝐵𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
331, 32bitr3i 277 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wrex 3066  Vcvv 3470  c0 4318  {csn 4624  cop 4630   class class class wbr 5142  cima 5675  ccom 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator