| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version | ||
| Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbrfv 6878 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
| 2 | 1 | reximdv 3148 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
| 3 | elimag 6019 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 “ cima 5624 Fun wfun 6482 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 |
| This theorem is referenced by: funimassd 6896 ssimaex 6915 isofrlem 7282 fimaproj 8073 tz7.49 8372 rankwflemb 9695 tcrank 9786 zorn2lem5 10400 zorn2lem6 10401 uniimadom 10444 wunr1om 10619 tskr1om 10667 tskr1om2 10668 grur1 10720 imadrhmcl 20716 iscldtop 23013 kqfvima 23648 fmfnfmlem4 23875 fmfnfm 23876 qustgpopn 24038 cphsscph 25181 c1liplem1 25931 plypf1 26147 lrrecfr 27889 ltgseg 28577 axcontlem9 28954 uhgrspan1 29285 pthdlem2lem 29749 htthlem 30901 xrofsup 32756 tocyccntz 33122 rhmimaidl 33406 esplymhp 33610 dimval 33636 dimvalfi 33637 txomap 33870 qtophaus 33872 erdszelem7 35264 erdszelem8 35265 mrsub0 35583 mrsubccat 35585 mrsubcn 35586 msubrn 35596 mthmblem 35647 ivthALT 36402 weiunfr 36534 ftc2nc 37765 heibor1lem 37872 aks6d1c4 42240 imacrhmcl 42635 ismrc 42821 relpfrlem 45073 icccncfext 46012 dirkercncflem2 46229 smfpimbor1lem1 46923 imaf1co 49283 |
| Copyright terms: Public domain | W3C validator |