| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version | ||
| Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbrfv 6875 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
| 2 | 1 | reximdv 3144 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
| 3 | elimag 6019 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 “ cima 5626 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: funimassd 6893 ssimaex 6912 isofrlem 7281 fimaproj 8075 tz7.49 8374 rankwflemb 9708 tcrank 9799 zorn2lem5 10413 zorn2lem6 10414 uniimadom 10457 wunr1om 10632 tskr1om 10680 tskr1om2 10681 grur1 10733 imadrhmcl 20700 iscldtop 22998 kqfvima 23633 fmfnfmlem4 23860 fmfnfm 23861 qustgpopn 24023 cphsscph 25167 c1liplem1 25917 plypf1 26133 lrrecfr 27873 ltgseg 28559 axcontlem9 28935 uhgrspan1 29266 pthdlem2lem 29730 htthlem 30879 xrofsup 32723 tocyccntz 33099 rhmimaidl 33379 dimval 33572 dimvalfi 33573 txomap 33800 qtophaus 33802 erdszelem7 35169 erdszelem8 35170 mrsub0 35488 mrsubccat 35490 mrsubcn 35491 msubrn 35501 mthmblem 35552 ivthALT 36308 weiunfr 36440 ftc2nc 37681 heibor1lem 37788 aks6d1c4 42097 imacrhmcl 42487 ismrc 42674 relpfrlem 44927 icccncfext 45869 dirkercncflem2 46086 smfpimbor1lem1 46780 imaf1co 49141 |
| Copyright terms: Public domain | W3C validator |