Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version |
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbrfv 6820 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
2 | 1 | reximdv 3202 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
3 | elimag 5973 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
4 | 3 | ibi 266 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
5 | 2, 4 | impel 506 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 “ cima 5592 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: ssimaex 6853 isofrlem 7211 fimaproj 7976 tz7.49 8276 rankwflemb 9551 tcrank 9642 zorn2lem5 10256 zorn2lem6 10257 uniimadom 10300 wunr1om 10475 tskr1om 10523 tskr1om2 10524 grur1 10576 iscldtop 22246 kqfvima 22881 fmfnfmlem4 23108 fmfnfm 23109 qustgpopn 23271 cphsscph 24415 c1liplem1 25160 plypf1 25373 ltgseg 26957 axcontlem9 27340 uhgrspan1 27670 pthdlem2lem 28135 htthlem 29279 xrofsup 31090 tocyccntz 31411 rhmimaidl 31609 dimval 31686 dimvalfi 31687 txomap 31784 qtophaus 31786 erdszelem7 33159 erdszelem8 33160 mrsub0 33478 mrsubccat 33480 mrsubcn 33481 msubrn 33491 mthmblem 33542 lrrecfr 34100 ivthALT 34524 ftc2nc 35859 heibor1lem 35967 ismrc 40523 funimassd 42770 icccncfext 43428 dirkercncflem2 43645 smfpimbor1lem1 44332 |
Copyright terms: Public domain | W3C validator |