![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version |
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbrfv 6971 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
2 | 1 | reximdv 3176 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
3 | elimag 6093 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 “ cima 5703 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: funimassd 6988 ssimaex 7007 isofrlem 7376 fimaproj 8176 tz7.49 8501 rankwflemb 9862 tcrank 9953 zorn2lem5 10569 zorn2lem6 10570 uniimadom 10613 wunr1om 10788 tskr1om 10836 tskr1om2 10837 grur1 10889 imadrhmcl 20820 iscldtop 23124 kqfvima 23759 fmfnfmlem4 23986 fmfnfm 23987 qustgpopn 24149 cphsscph 25304 c1liplem1 26055 plypf1 26271 lrrecfr 27994 ltgseg 28622 axcontlem9 29005 uhgrspan1 29338 pthdlem2lem 29803 htthlem 30949 xrofsup 32774 tocyccntz 33137 rhmimaidl 33425 dimval 33613 dimvalfi 33614 txomap 33780 qtophaus 33782 erdszelem7 35165 erdszelem8 35166 mrsub0 35484 mrsubccat 35486 mrsubcn 35487 msubrn 35497 mthmblem 35548 ivthALT 36301 weiunfr 36433 ftc2nc 37662 heibor1lem 37769 aks6d1c4 42081 imacrhmcl 42469 ismrc 42657 icccncfext 45808 dirkercncflem2 46025 smfpimbor1lem1 46719 |
Copyright terms: Public domain | W3C validator |