MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelima Structured version   Visualization version   GIF version

Theorem fvelima 6987
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelima
StepHypRef Expression
1 funbrfv 6971 . . 3 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹𝑥) = 𝐴))
21reximdv 3176 . 2 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
3 elimag 6093 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
43ibi 267 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
52, 4impel 505 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  funimassd  6988  ssimaex  7007  isofrlem  7376  fimaproj  8176  tz7.49  8501  rankwflemb  9862  tcrank  9953  zorn2lem5  10569  zorn2lem6  10570  uniimadom  10613  wunr1om  10788  tskr1om  10836  tskr1om2  10837  grur1  10889  imadrhmcl  20820  iscldtop  23124  kqfvima  23759  fmfnfmlem4  23986  fmfnfm  23987  qustgpopn  24149  cphsscph  25304  c1liplem1  26055  plypf1  26271  lrrecfr  27994  ltgseg  28622  axcontlem9  29005  uhgrspan1  29338  pthdlem2lem  29803  htthlem  30949  xrofsup  32774  tocyccntz  33137  rhmimaidl  33425  dimval  33613  dimvalfi  33614  txomap  33780  qtophaus  33782  erdszelem7  35165  erdszelem8  35166  mrsub0  35484  mrsubccat  35486  mrsubcn  35487  msubrn  35497  mthmblem  35548  ivthALT  36301  weiunfr  36433  ftc2nc  37662  heibor1lem  37769  aks6d1c4  42081  imacrhmcl  42469  ismrc  42657  icccncfext  45808  dirkercncflem2  46025  smfpimbor1lem1  46719
  Copyright terms: Public domain W3C validator