| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version | ||
| Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbrfv 6870 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
| 2 | 1 | reximdv 3147 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
| 3 | elimag 6013 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 “ cima 5619 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: funimassd 6888 ssimaex 6907 isofrlem 7274 fimaproj 8065 tz7.49 8364 rankwflemb 9686 tcrank 9777 zorn2lem5 10391 zorn2lem6 10392 uniimadom 10435 wunr1om 10610 tskr1om 10658 tskr1om2 10659 grur1 10711 imadrhmcl 20713 iscldtop 23011 kqfvima 23646 fmfnfmlem4 23873 fmfnfm 23874 qustgpopn 24036 cphsscph 25179 c1liplem1 25929 plypf1 26145 lrrecfr 27887 ltgseg 28575 axcontlem9 28951 uhgrspan1 29282 pthdlem2lem 29746 htthlem 30895 xrofsup 32748 tocyccntz 33111 rhmimaidl 33395 esplymhp 33587 dimval 33611 dimvalfi 33612 txomap 33845 qtophaus 33847 erdszelem7 35239 erdszelem8 35240 mrsub0 35558 mrsubccat 35560 mrsubcn 35561 msubrn 35571 mthmblem 35622 ivthALT 36375 weiunfr 36507 ftc2nc 37748 heibor1lem 37855 aks6d1c4 42163 imacrhmcl 42553 ismrc 42740 relpfrlem 44992 icccncfext 45931 dirkercncflem2 46148 smfpimbor1lem1 46842 imaf1co 49193 |
| Copyright terms: Public domain | W3C validator |