MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelima Structured version   Visualization version   GIF version

Theorem fvelima 6835
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelima
StepHypRef Expression
1 funbrfv 6820 . . 3 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹𝑥) = 𝐴))
21reximdv 3202 . 2 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
3 elimag 5973 . . 3 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
43ibi 266 . 2 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
52, 4impel 506 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cima 5592  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  ssimaex  6853  isofrlem  7211  fimaproj  7976  tz7.49  8276  rankwflemb  9551  tcrank  9642  zorn2lem5  10256  zorn2lem6  10257  uniimadom  10300  wunr1om  10475  tskr1om  10523  tskr1om2  10524  grur1  10576  iscldtop  22246  kqfvima  22881  fmfnfmlem4  23108  fmfnfm  23109  qustgpopn  23271  cphsscph  24415  c1liplem1  25160  plypf1  25373  ltgseg  26957  axcontlem9  27340  uhgrspan1  27670  pthdlem2lem  28135  htthlem  29279  xrofsup  31090  tocyccntz  31411  rhmimaidl  31609  dimval  31686  dimvalfi  31687  txomap  31784  qtophaus  31786  erdszelem7  33159  erdszelem8  33160  mrsub0  33478  mrsubccat  33480  mrsubcn  33481  msubrn  33491  mthmblem  33542  lrrecfr  34100  ivthALT  34524  ftc2nc  35859  heibor1lem  35967  ismrc  40523  funimassd  42770  icccncfext  43428  dirkercncflem2  43645  smfpimbor1lem1  44332
  Copyright terms: Public domain W3C validator