![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version |
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbrfv 6958 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
2 | 1 | reximdv 3168 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
3 | elimag 6084 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 “ cima 5692 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: funimassd 6975 ssimaex 6994 isofrlem 7360 fimaproj 8159 tz7.49 8484 rankwflemb 9831 tcrank 9922 zorn2lem5 10538 zorn2lem6 10539 uniimadom 10582 wunr1om 10757 tskr1om 10805 tskr1om2 10806 grur1 10858 imadrhmcl 20815 iscldtop 23119 kqfvima 23754 fmfnfmlem4 23981 fmfnfm 23982 qustgpopn 24144 cphsscph 25299 c1liplem1 26050 plypf1 26266 lrrecfr 27991 ltgseg 28619 axcontlem9 29002 uhgrspan1 29335 pthdlem2lem 29800 htthlem 30946 xrofsup 32778 tocyccntz 33147 rhmimaidl 33440 dimval 33628 dimvalfi 33629 txomap 33795 qtophaus 33797 erdszelem7 35182 erdszelem8 35183 mrsub0 35501 mrsubccat 35503 mrsubcn 35504 msubrn 35514 mthmblem 35565 ivthALT 36318 weiunfr 36450 ftc2nc 37689 heibor1lem 37796 aks6d1c4 42106 imacrhmcl 42501 ismrc 42689 icccncfext 45843 dirkercncflem2 46060 smfpimbor1lem1 46754 |
Copyright terms: Public domain | W3C validator |