| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version | ||
| Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbrfv 6909 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
| 2 | 1 | reximdv 3148 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
| 3 | elimag 6035 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: funimassd 6927 ssimaex 6946 isofrlem 7315 fimaproj 8114 tz7.49 8413 rankwflemb 9746 tcrank 9837 zorn2lem5 10453 zorn2lem6 10454 uniimadom 10497 wunr1om 10672 tskr1om 10720 tskr1om2 10721 grur1 10773 imadrhmcl 20706 iscldtop 22982 kqfvima 23617 fmfnfmlem4 23844 fmfnfm 23845 qustgpopn 24007 cphsscph 25151 c1liplem1 25901 plypf1 26117 lrrecfr 27850 ltgseg 28523 axcontlem9 28899 uhgrspan1 29230 pthdlem2lem 29697 htthlem 30846 xrofsup 32690 tocyccntz 33101 rhmimaidl 33403 dimval 33596 dimvalfi 33597 txomap 33824 qtophaus 33826 erdszelem7 35184 erdszelem8 35185 mrsub0 35503 mrsubccat 35505 mrsubcn 35506 msubrn 35516 mthmblem 35567 ivthALT 36323 weiunfr 36455 ftc2nc 37696 heibor1lem 37803 aks6d1c4 42112 imacrhmcl 42502 ismrc 42689 relpfrlem 44943 icccncfext 45885 dirkercncflem2 46102 smfpimbor1lem1 46796 imaf1co 49144 |
| Copyright terms: Public domain | W3C validator |