| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version | ||
| Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funbrfv 6932 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
| 2 | 1 | reximdv 3156 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
| 3 | elimag 6056 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
| 5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 “ cima 5662 Fun wfun 6530 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: funimassd 6950 ssimaex 6969 isofrlem 7338 fimaproj 8139 tz7.49 8464 rankwflemb 9812 tcrank 9903 zorn2lem5 10519 zorn2lem6 10520 uniimadom 10563 wunr1om 10738 tskr1om 10786 tskr1om2 10787 grur1 10839 imadrhmcl 20762 iscldtop 23038 kqfvima 23673 fmfnfmlem4 23900 fmfnfm 23901 qustgpopn 24063 cphsscph 25208 c1liplem1 25958 plypf1 26174 lrrecfr 27907 ltgseg 28580 axcontlem9 28956 uhgrspan1 29287 pthdlem2lem 29754 htthlem 30903 xrofsup 32749 tocyccntz 33160 rhmimaidl 33452 dimval 33645 dimvalfi 33646 txomap 33870 qtophaus 33872 erdszelem7 35224 erdszelem8 35225 mrsub0 35543 mrsubccat 35545 mrsubcn 35546 msubrn 35556 mthmblem 35607 ivthALT 36358 weiunfr 36490 ftc2nc 37731 heibor1lem 37838 aks6d1c4 42142 imacrhmcl 42504 ismrc 42691 relpfrlem 44945 icccncfext 45883 dirkercncflem2 46100 smfpimbor1lem1 46794 imaf1co 49062 |
| Copyright terms: Public domain | W3C validator |