| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cmp | Structured version Visualization version GIF version | ||
| Description: The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
| Ref | Expression |
|---|---|
| 0cmp | ⊢ {∅} ∈ Comp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn0top 22893 | . . 3 ⊢ {∅} ∈ Top | |
| 2 | snfi 9017 | . . 3 ⊢ {∅} ∈ Fin | |
| 3 | 1, 2 | elini 4165 | . 2 ⊢ {∅} ∈ (Top ∩ Fin) |
| 4 | fincmp 23287 | . 2 ⊢ ({∅} ∈ (Top ∩ Fin) → {∅} ∈ Comp) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ {∅} ∈ Comp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∩ cin 3916 ∅c0 4299 {csn 4592 Fincfn 8921 Topctop 22787 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 df-top 22788 df-topon 22805 df-cmp 23281 |
| This theorem is referenced by: fiuncmp 23298 xkouni 23493 icccmp 24721 zarcmplem 33878 ordcmp 36442 |
| Copyright terms: Public domain | W3C validator |