MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cmp Structured version   Visualization version   GIF version

Theorem 0cmp 23292
Description: The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
0cmp {∅} ∈ Comp

Proof of Theorem 0cmp
StepHypRef Expression
1 sn0top 22896 . . 3 {∅} ∈ Top
2 snfi 9063 . . 3 {∅} ∈ Fin
31, 2elini 4190 . 2 {∅} ∈ (Top ∩ Fin)
4 fincmp 23291 . 2 ({∅} ∈ (Top ∩ Fin) → {∅} ∈ Comp)
53, 4ax-mp 5 1 {∅} ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  cin 3944  c0 4319  {csn 4625  Fincfn 8958  Topctop 22789  Compccmp 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7866  df-1o 8481  df-en 8959  df-fin 8962  df-top 22790  df-topon 22807  df-cmp 23285
This theorem is referenced by:  fiuncmp  23302  xkouni  23497  icccmp  24735  zarcmplem  33477  ordcmp  35926
  Copyright terms: Public domain W3C validator