MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cmp Structured version   Visualization version   GIF version

Theorem 0cmp 21523
Description: The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
0cmp {∅} ∈ Comp

Proof of Theorem 0cmp
StepHypRef Expression
1 sn0top 21129 . . 3 {∅} ∈ Top
2 snfi 8278 . . 3 {∅} ∈ Fin
3 elin 3992 . . 3 ({∅} ∈ (Top ∩ Fin) ↔ ({∅} ∈ Top ∧ {∅} ∈ Fin))
41, 2, 3mpbir2an 703 . 2 {∅} ∈ (Top ∩ Fin)
5 fincmp 21522 . 2 ({∅} ∈ (Top ∩ Fin) → {∅} ∈ Comp)
64, 5ax-mp 5 1 {∅} ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  wcel 2157  cin 3766  c0 4113  {csn 4366  Fincfn 8193  Topctop 21023  Compccmp 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-om 7298  df-1o 7797  df-er 7980  df-en 8194  df-fin 8197  df-top 21024  df-topon 21041  df-cmp 21516
This theorem is referenced by:  fiuncmp  21533  xkouni  21728  icccmp  22953  ordcmp  32946
  Copyright terms: Public domain W3C validator