Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuz Structured version   Visualization version   GIF version

Theorem sge0reuz 43437
Description: Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuz.k 𝑘𝜑
sge0reuz.m (𝜑𝑀 ∈ ℤ)
sge0reuz.z 𝑍 = (ℤ𝑀)
sge0reuz.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0reuz (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuz
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0reuz.k . . 3 𝑘𝜑
2 sge0reuz.z . . . . 5 𝑍 = (ℤ𝑀)
32a1i 11 . . . 4 (𝜑𝑍 = (ℤ𝑀))
4 fvex 6664 . . . 4 (ℤ𝑀) ∈ V
53, 4eqeltrdi 2859 . . 3 (𝜑𝑍 ∈ V)
6 sge0reuz.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
71, 5, 6sge0revalmpt 43368 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
8 nfv 1916 . . . . 5 𝑥𝜑
9 eqid 2759 . . . . 5 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) = (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)
10 nfv 1916 . . . . . . . 8 𝑘 𝑥 ∈ (𝒫 𝑍 ∩ Fin)
111, 10nfan 1901 . . . . . . 7 𝑘(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin))
12 elinel2 4097 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
1312adantl 486 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑥 ∈ Fin)
14 rge0ssre 12873 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
15 simpll 767 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
16 elpwinss 42041 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
1716adantr 485 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝑍)
18 simpr 489 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
1917, 18sseldd 3889 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑍)
2019adantll 714 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑍)
2115, 20, 6syl2anc 588 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,)+∞))
2214, 21sseldi 3886 . . . . . . 7 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2311, 13, 22fsumreclf 42569 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
2423rexrd 10714 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ*)
258, 9, 24rnmptssd 42179 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*)
26 supxrcl 12734 . . . 4 (ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
2725, 26syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
28 nfv 1916 . . . . 5 𝑛𝜑
29 eqid 2759 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
30 nfv 1916 . . . . . . . 8 𝑘 𝑛𝑍
311, 30nfan 1901 . . . . . . 7 𝑘(𝜑𝑛𝑍)
32 fzfid 13375 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
33 elfzuz 12937 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3433, 2eleqtrrdi 2862 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3534adantl 486 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
3614, 6sseldi 3886 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
3735, 36syldan 595 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3837adantlr 715 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3931, 32, 38fsumreclf 42569 . . . . . 6 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
4039rexrd 10714 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ*)
4128, 29, 40rnmptssd 42179 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ*)
42 supxrcl 12734 . . . 4 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ* → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
4341, 42syl 17 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
44 vex 3411 . . . . . . . 8 𝑦 ∈ V
459elrnmpt 5790 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵))
4644, 45ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4746biimpi 219 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4847adantl 486 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
49 sge0reuz.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
50493ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑀 ∈ ℤ)
51163ad2ant2 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥𝑍)
52133adant3 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
5350, 2, 51, 52uzfissfz 42311 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛))
54 nfv 1916 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵)
55 nfmpt1 5123 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
5655nfrn 5786 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
57 nfv 1916 . . . . . . . . . . 11 𝑛 𝑦𝑤
5856, 57nfrex 3231 . . . . . . . . . 10 𝑛𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤
59 id 22 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛𝑍)
60 sumex 15077 . . . . . . . . . . . . . . . 16 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V)
6229elrnmpt1 5792 . . . . . . . . . . . . . . 15 ((𝑛𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
6359, 61, 62syl2anc 588 . . . . . . . . . . . . . 14 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
64633ad2ant2 1132 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
65 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 = Σ𝑘𝑥 𝐵)
66 nfcv 2917 . . . . . . . . . . . . . . . . . . 19 𝑘𝑦
67 nfcv 2917 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑥
6867nfsum1 15079 . . . . . . . . . . . . . . . . . . 19 𝑘Σ𝑘𝑥 𝐵
6966, 68nfeq 2930 . . . . . . . . . . . . . . . . . 18 𝑘 𝑦 = Σ𝑘𝑥 𝐵
701, 69nfan 1901 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑦 = Σ𝑘𝑥 𝐵)
71 nfv 1916 . . . . . . . . . . . . . . . . 17 𝑘 𝑥 ⊆ (𝑀...𝑛)
7270, 71nfan 1901 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛))
73 fzfid 13375 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → (𝑀...𝑛) ∈ Fin)
7437ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
75 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝜑)
7634adantl 486 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
77 0xr 10711 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
79 pnfxr 10718 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
8079a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
81 icogelb 12815 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
8278, 80, 6, 81syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
8375, 76, 82syl2anc 588 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 0 ≤ 𝐵)
84 simpr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑥 ⊆ (𝑀...𝑛))
8572, 73, 74, 83, 84fsumlessf 42570 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8665, 85eqbrtrd 5047 . . . . . . . . . . . . . 14 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
87863adant2 1129 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
88 breq2 5029 . . . . . . . . . . . . . 14 (𝑤 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑦𝑤𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
8988rspcev 3539 . . . . . . . . . . . . 13 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ∧ 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9064, 87, 89syl2anc 588 . . . . . . . . . . . 12 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
91903exp 1117 . . . . . . . . . . 11 ((𝜑𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
92913adant2 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9354, 58, 92rexlimd 3239 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9453, 93mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
95943exp 1117 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9695rexlimdv 3205 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9796imp 411 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9848, 97syldan 595 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9925, 41, 98suplesup2 42361 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ≤ sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
10029elrnmpt 5790 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
10144, 100ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
102101biimpi 219 . . . . . . . 8 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
103102adantl 486 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
10434ssriv 3892 . . . . . . . . . . . . . . 15 (𝑀...𝑛) ⊆ 𝑍
105 ovex 7176 . . . . . . . . . . . . . . . 16 (𝑀...𝑛) ∈ V
106105elpw 4491 . . . . . . . . . . . . . . 15 ((𝑀...𝑛) ∈ 𝒫 𝑍 ↔ (𝑀...𝑛) ⊆ 𝑍)
107104, 106mpbir 234 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ 𝒫 𝑍
108 fzfi 13374 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ Fin
109107, 108elini 4094 . . . . . . . . . . . . 13 (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin)
110109a1i 11 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin))
111 id 22 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
112 sumeq1 15078 . . . . . . . . . . . . 13 (𝑥 = (𝑀...𝑛) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
113112rspceeqv 3554 . . . . . . . . . . . 12 (((𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
114110, 111, 113syl2anc 588 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
11544a1i 11 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ V)
1169, 114, 115elrnmptd 5795 . . . . . . . . . 10 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
1171162a1i 12 . . . . . . . . 9 (𝜑 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))))
118117rexlimdv 3205 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
119118adantr 485 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
120103, 119mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
121120ralrimiva 3111 . . . . 5 (𝜑 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
122 dfss3 3876 . . . . 5 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
123121, 122sylibr 237 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
124 supxrss 12751 . . . 4 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ∧ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
125123, 25, 124syl2anc 588 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
12627, 43, 99, 125xrletrid 12574 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
1277, 126eqtrd 2794 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wnf 1786  wcel 2112  wral 3068  wrex 3069  Vcvv 3407  cin 3853  wss 3854  𝒫 cpw 4487   class class class wbr 5025  cmpt 5105  ran crn 5518  cfv 6328  (class class class)co 7143  Fincfn 8520  supcsup 8922  cr 10559  0cc0 10560  +∞cpnf 10695  *cxr 10697   < clt 10698  cle 10699  cz 12005  cuz 12267  [,)cico 12766  ...cfz 12924  Σcsu 15075  Σ^csumge0 43352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-sup 8924  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-ico 12770  df-icc 12771  df-fz 12925  df-fzo 13068  df-seq 13404  df-exp 13465  df-hash 13726  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-clim 14878  df-sum 15076  df-sumge0 43353
This theorem is referenced by:  sge0reuzb  43438
  Copyright terms: Public domain W3C validator