Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuz Structured version   Visualization version   GIF version

Theorem sge0reuz 45870
Description: Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuz.k 𝑘𝜑
sge0reuz.m (𝜑𝑀 ∈ ℤ)
sge0reuz.z 𝑍 = (ℤ𝑀)
sge0reuz.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0reuz (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuz
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0reuz.k . . 3 𝑘𝜑
2 sge0reuz.z . . . . 5 𝑍 = (ℤ𝑀)
32a1i 11 . . . 4 (𝜑𝑍 = (ℤ𝑀))
4 fvex 6903 . . . 4 (ℤ𝑀) ∈ V
53, 4eqeltrdi 2833 . . 3 (𝜑𝑍 ∈ V)
6 sge0reuz.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
71, 5, 6sge0revalmpt 45801 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
8 nfv 1909 . . . . 5 𝑥𝜑
9 eqid 2725 . . . . 5 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) = (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)
10 nfv 1909 . . . . . . . 8 𝑘 𝑥 ∈ (𝒫 𝑍 ∩ Fin)
111, 10nfan 1894 . . . . . . 7 𝑘(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin))
12 elinel2 4188 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
1312adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑥 ∈ Fin)
14 rge0ssre 13463 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
15 simpll 765 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
16 elpwinss 44450 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
1716adantr 479 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝑍)
18 simpr 483 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
1917, 18sseldd 3973 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑍)
2019adantll 712 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑍)
2115, 20, 6syl2anc 582 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,)+∞))
2214, 21sselid 3970 . . . . . . 7 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2311, 13, 22fsumreclf 44999 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
2423rexrd 11292 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ*)
258, 9, 24rnmptssd 44605 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*)
26 supxrcl 13324 . . . 4 (ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
2725, 26syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
28 nfv 1909 . . . . 5 𝑛𝜑
29 eqid 2725 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
30 nfv 1909 . . . . . . . 8 𝑘 𝑛𝑍
311, 30nfan 1894 . . . . . . 7 𝑘(𝜑𝑛𝑍)
32 fzfid 13968 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
33 elfzuz 13527 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3433, 2eleqtrrdi 2836 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3534adantl 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
3614, 6sselid 3970 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
3735, 36syldan 589 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3837adantlr 713 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3931, 32, 38fsumreclf 44999 . . . . . 6 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
4039rexrd 11292 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ*)
4128, 29, 40rnmptssd 44605 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ*)
42 supxrcl 13324 . . . 4 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ* → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
4341, 42syl 17 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
44 vex 3467 . . . . . . . 8 𝑦 ∈ V
459elrnmpt 5950 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵))
4644, 45ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4746biimpi 215 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4847adantl 480 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
49 sge0reuz.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
50493ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑀 ∈ ℤ)
51163ad2ant2 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥𝑍)
52133adant3 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
5350, 2, 51, 52uzfissfz 44743 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛))
54 nfv 1909 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵)
55 nfmpt1 5249 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
5655nfrn 5946 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
57 nfv 1909 . . . . . . . . . . 11 𝑛 𝑦𝑤
5856, 57nfrexw 3301 . . . . . . . . . 10 𝑛𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤
59 id 22 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛𝑍)
60 sumex 15664 . . . . . . . . . . . . . . . 16 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V)
6229elrnmpt1 5952 . . . . . . . . . . . . . . 15 ((𝑛𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
6359, 61, 62syl2anc 582 . . . . . . . . . . . . . 14 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
64633ad2ant2 1131 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
65 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 = Σ𝑘𝑥 𝐵)
66 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑘𝑦
67 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑥
6867nfsum1 15666 . . . . . . . . . . . . . . . . . . 19 𝑘Σ𝑘𝑥 𝐵
6966, 68nfeq 2906 . . . . . . . . . . . . . . . . . 18 𝑘 𝑦 = Σ𝑘𝑥 𝐵
701, 69nfan 1894 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑦 = Σ𝑘𝑥 𝐵)
71 nfv 1909 . . . . . . . . . . . . . . . . 17 𝑘 𝑥 ⊆ (𝑀...𝑛)
7270, 71nfan 1894 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛))
73 fzfid 13968 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → (𝑀...𝑛) ∈ Fin)
7437ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
75 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝜑)
7634adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
77 0xr 11289 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
79 pnfxr 11296 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
8079a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
81 icogelb 13405 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
8278, 80, 6, 81syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
8375, 76, 82syl2anc 582 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 0 ≤ 𝐵)
84 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑥 ⊆ (𝑀...𝑛))
8572, 73, 74, 83, 84fsumlessf 45000 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8665, 85eqbrtrd 5163 . . . . . . . . . . . . . 14 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
87863adant2 1128 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
88 breq2 5145 . . . . . . . . . . . . . 14 (𝑤 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑦𝑤𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
8988rspcev 3601 . . . . . . . . . . . . 13 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ∧ 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9064, 87, 89syl2anc 582 . . . . . . . . . . . 12 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
91903exp 1116 . . . . . . . . . . 11 ((𝜑𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
92913adant2 1128 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9354, 58, 92rexlimd 3254 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9453, 93mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
95943exp 1116 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9695rexlimdv 3143 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9796imp 405 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9848, 97syldan 589 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9925, 41, 98suplesup2 44793 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ≤ sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
10029elrnmpt 5950 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
10144, 100ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
102101biimpi 215 . . . . . . . 8 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
103102adantl 480 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
10434ssriv 3976 . . . . . . . . . . . . . . 15 (𝑀...𝑛) ⊆ 𝑍
105 ovex 7447 . . . . . . . . . . . . . . . 16 (𝑀...𝑛) ∈ V
106105elpw 4600 . . . . . . . . . . . . . . 15 ((𝑀...𝑛) ∈ 𝒫 𝑍 ↔ (𝑀...𝑛) ⊆ 𝑍)
107104, 106mpbir 230 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ 𝒫 𝑍
108 fzfi 13967 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ Fin
109107, 108elini 4185 . . . . . . . . . . . . 13 (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin)
110109a1i 11 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin))
111 id 22 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
112 sumeq1 15665 . . . . . . . . . . . . 13 (𝑥 = (𝑀...𝑛) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
113112rspceeqv 3623 . . . . . . . . . . . 12 (((𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
114110, 111, 113syl2anc 582 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
11544a1i 11 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ V)
1169, 114, 115elrnmptd 5955 . . . . . . . . . 10 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
1171162a1i 12 . . . . . . . . 9 (𝜑 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))))
118117rexlimdv 3143 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
119118adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
120103, 119mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
121120ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
122 dfss3 3960 . . . . 5 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
123121, 122sylibr 233 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
124 supxrss 13341 . . . 4 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ∧ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
125123, 25, 124syl2anc 582 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
12627, 43, 99, 125xrletrid 13164 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
1277, 126eqtrd 2765 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wral 3051  wrex 3060  Vcvv 3463  cin 3938  wss 3939  𝒫 cpw 4596   class class class wbr 5141  cmpt 5224  ran crn 5671  cfv 6541  (class class class)co 7414  Fincfn 8960  supcsup 9461  cr 11135  0cc0 11136  +∞cpnf 11273  *cxr 11275   < clt 11276  cle 11277  cz 12586  cuz 12850  [,)cico 13356  ...cfz 13514  Σcsu 15662  Σ^csumge0 45785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-sum 15663  df-sumge0 45786
This theorem is referenced by:  sge0reuzb  45871
  Copyright terms: Public domain W3C validator