Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuz Structured version   Visualization version   GIF version

Theorem sge0reuz 45735
Description: Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuz.k 𝑘𝜑
sge0reuz.m (𝜑𝑀 ∈ ℤ)
sge0reuz.z 𝑍 = (ℤ𝑀)
sge0reuz.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0reuz (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuz
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0reuz.k . . 3 𝑘𝜑
2 sge0reuz.z . . . . 5 𝑍 = (ℤ𝑀)
32a1i 11 . . . 4 (𝜑𝑍 = (ℤ𝑀))
4 fvex 6898 . . . 4 (ℤ𝑀) ∈ V
53, 4eqeltrdi 2835 . . 3 (𝜑𝑍 ∈ V)
6 sge0reuz.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
71, 5, 6sge0revalmpt 45666 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
8 nfv 1909 . . . . 5 𝑥𝜑
9 eqid 2726 . . . . 5 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) = (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)
10 nfv 1909 . . . . . . . 8 𝑘 𝑥 ∈ (𝒫 𝑍 ∩ Fin)
111, 10nfan 1894 . . . . . . 7 𝑘(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin))
12 elinel2 4191 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
1312adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑥 ∈ Fin)
14 rge0ssre 13439 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
15 simpll 764 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
16 elpwinss 44311 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
1716adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝑍)
18 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
1917, 18sseldd 3978 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑍)
2019adantll 711 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑍)
2115, 20, 6syl2anc 583 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,)+∞))
2214, 21sselid 3975 . . . . . . 7 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2311, 13, 22fsumreclf 44864 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
2423rexrd 11268 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ*)
258, 9, 24rnmptssd 44467 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*)
26 supxrcl 13300 . . . 4 (ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
2725, 26syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ∈ ℝ*)
28 nfv 1909 . . . . 5 𝑛𝜑
29 eqid 2726 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
30 nfv 1909 . . . . . . . 8 𝑘 𝑛𝑍
311, 30nfan 1894 . . . . . . 7 𝑘(𝜑𝑛𝑍)
32 fzfid 13944 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
33 elfzuz 13503 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3433, 2eleqtrrdi 2838 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3534adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
3614, 6sselid 3975 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
3735, 36syldan 590 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3837adantlr 712 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
3931, 32, 38fsumreclf 44864 . . . . . 6 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
4039rexrd 11268 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ*)
4128, 29, 40rnmptssd 44467 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ*)
42 supxrcl 13300 . . . 4 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ* → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
4341, 42syl 17 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ∈ ℝ*)
44 vex 3472 . . . . . . . 8 𝑦 ∈ V
459elrnmpt 5949 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵))
4644, 45ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4746biimpi 215 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
4847adantl 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
49 sge0reuz.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
50493ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑀 ∈ ℤ)
51163ad2ant2 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥𝑍)
52133adant3 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
5350, 2, 51, 52uzfissfz 44608 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛))
54 nfv 1909 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵)
55 nfmpt1 5249 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
5655nfrn 5945 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
57 nfv 1909 . . . . . . . . . . 11 𝑛 𝑦𝑤
5856, 57nfrexw 3304 . . . . . . . . . 10 𝑛𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤
59 id 22 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛𝑍)
60 sumex 15640 . . . . . . . . . . . . . . . 16 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V)
6229elrnmpt1 5951 . . . . . . . . . . . . . . 15 ((𝑛𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ V) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
6359, 61, 62syl2anc 583 . . . . . . . . . . . . . 14 (𝑛𝑍 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
64633ad2ant2 1131 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
65 simplr 766 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 = Σ𝑘𝑥 𝐵)
66 nfcv 2897 . . . . . . . . . . . . . . . . . . 19 𝑘𝑦
67 nfcv 2897 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑥
6867nfsum1 15642 . . . . . . . . . . . . . . . . . . 19 𝑘Σ𝑘𝑥 𝐵
6966, 68nfeq 2910 . . . . . . . . . . . . . . . . . 18 𝑘 𝑦 = Σ𝑘𝑥 𝐵
701, 69nfan 1894 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑦 = Σ𝑘𝑥 𝐵)
71 nfv 1909 . . . . . . . . . . . . . . . . 17 𝑘 𝑥 ⊆ (𝑀...𝑛)
7270, 71nfan 1894 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛))
73 fzfid 13944 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → (𝑀...𝑛) ∈ Fin)
7437ad4ant14 749 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
75 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝜑)
7634adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
77 0xr 11265 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
79 pnfxr 11272 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
8079a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
81 icogelb 13381 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
8278, 80, 6, 81syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
8375, 76, 82syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 0 ≤ 𝐵)
84 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑥 ⊆ (𝑀...𝑛))
8572, 73, 74, 83, 84fsumlessf 44865 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8665, 85eqbrtrd 5163 . . . . . . . . . . . . . 14 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
87863adant2 1128 . . . . . . . . . . . . 13 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
88 breq2 5145 . . . . . . . . . . . . . 14 (𝑤 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑦𝑤𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
8988rspcev 3606 . . . . . . . . . . . . 13 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ∧ 𝑦 ≤ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9064, 87, 89syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑦 = Σ𝑘𝑥 𝐵) ∧ 𝑛𝑍𝑥 ⊆ (𝑀...𝑛)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
91903exp 1116 . . . . . . . . . . 11 ((𝜑𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
92913adant2 1128 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (𝑛𝑍 → (𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9354, 58, 92rexlimd 3257 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → (∃𝑛𝑍 𝑥 ⊆ (𝑀...𝑛) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9453, 93mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
95943exp 1116 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)))
9695rexlimdv 3147 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵 → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤))
9796imp 406 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9848, 97syldan 590 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)) → ∃𝑤 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑤)
9925, 41, 98suplesup2 44658 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) ≤ sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
10029elrnmpt 5949 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
10144, 100ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
102101biimpi 215 . . . . . . . 8 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
103102adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
10434ssriv 3981 . . . . . . . . . . . . . . 15 (𝑀...𝑛) ⊆ 𝑍
105 ovex 7438 . . . . . . . . . . . . . . . 16 (𝑀...𝑛) ∈ V
106105elpw 4601 . . . . . . . . . . . . . . 15 ((𝑀...𝑛) ∈ 𝒫 𝑍 ↔ (𝑀...𝑛) ⊆ 𝑍)
107104, 106mpbir 230 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ 𝒫 𝑍
108 fzfi 13943 . . . . . . . . . . . . . 14 (𝑀...𝑛) ∈ Fin
109107, 108elini 4188 . . . . . . . . . . . . 13 (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin)
110109a1i 11 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → (𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin))
111 id 22 . . . . . . . . . . . 12 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
112 sumeq1 15641 . . . . . . . . . . . . 13 (𝑥 = (𝑀...𝑛) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
113112rspceeqv 3628 . . . . . . . . . . . 12 (((𝑀...𝑛) ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
114110, 111, 113syl2anc 583 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝑦 = Σ𝑘𝑥 𝐵)
11544a1i 11 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ V)
1169, 114, 115elrnmptd 5954 . . . . . . . . . 10 (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
1171162a1i 12 . . . . . . . . 9 (𝜑 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))))
118117rexlimdv 3147 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
119118adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵)))
120103, 119mpd 15 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
121120ralrimiva 3140 . . . . 5 (𝜑 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
122 dfss3 3965 . . . . 5 (ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ↔ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
123121, 122sylibr 233 . . . 4 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵))
124 supxrss 13317 . . . 4 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ∧ ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵) ⊆ ℝ*) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
125123, 25, 124syl2anc 583 . . 3 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ))
12627, 43, 99, 125xrletrid 13140 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑍 ∩ Fin) ↦ Σ𝑘𝑥 𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
1277, 126eqtrd 2766 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wral 3055  wrex 3064  Vcvv 3468  cin 3942  wss 3943  𝒫 cpw 4597   class class class wbr 5141  cmpt 5224  ran crn 5670  cfv 6537  (class class class)co 7405  Fincfn 8941  supcsup 9437  cr 11111  0cc0 11112  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  cz 12562  cuz 12826  [,)cico 13332  ...cfz 13490  Σcsu 15638  Σ^csumge0 45650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-sumge0 45651
This theorem is referenced by:  sge0reuzb  45736
  Copyright terms: Public domain W3C validator