|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnn0 | Structured version Visualization version GIF version | ||
| Description: The range used in the definition of Σ^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| sge0rnn0 | ⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0elpw 5356 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝑋 | |
| 2 | 0fi 9082 | . . . . 5 ⊢ ∅ ∈ Fin | |
| 3 | 1, 2 | elini 4199 | . . . 4 ⊢ ∅ ∈ (𝒫 𝑋 ∩ Fin) | 
| 4 | sum0 15757 | . . . . 5 ⊢ Σ𝑦 ∈ ∅ (𝐹‘𝑦) = 0 | |
| 5 | 4 | eqcomi 2746 | . . . 4 ⊢ 0 = Σ𝑦 ∈ ∅ (𝐹‘𝑦) | 
| 6 | sumeq1 15725 | . . . . 5 ⊢ (𝑥 = ∅ → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) | |
| 7 | 6 | rspceeqv 3645 | . . . 4 ⊢ ((∅ ∈ (𝒫 𝑋 ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | 
| 8 | 3, 5, 7 | mp2an 692 | . . 3 ⊢ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) | 
| 9 | 0re 11263 | . . . 4 ⊢ 0 ∈ ℝ | |
| 10 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
| 11 | 10 | elrnmpt 5969 | . . . 4 ⊢ (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) | 
| 12 | 9, 11 | ax-mp 5 | . . 3 ⊢ (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | 
| 13 | 8, 12 | mpbir 231 | . 2 ⊢ 0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | 
| 14 | ne0i 4341 | . 2 ⊢ (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅) | |
| 15 | 13, 14 | ax-mp 5 | 1 ⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∩ cin 3950 ∅c0 4333 𝒫 cpw 4600 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 Fincfn 8985 ℝcr 11154 0cc0 11155 Σcsu 15722 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 | 
| This theorem is referenced by: sge0supre 46404 sge0ltfirp 46415 sge0resplit 46421 | 
| Copyright terms: Public domain | W3C validator |