![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnn0 | Structured version Visualization version GIF version |
Description: The range used in the definition of Σ^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0rnn0 | ⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5147 | . . . . 5 ⊢ ∅ ∈ 𝒫 𝑋 | |
2 | 0fin 8592 | . . . . 5 ⊢ ∅ ∈ Fin | |
3 | 1, 2 | elini 4091 | . . . 4 ⊢ ∅ ∈ (𝒫 𝑋 ∩ Fin) |
4 | sum0 14911 | . . . . 5 ⊢ Σ𝑦 ∈ ∅ (𝐹‘𝑦) = 0 | |
5 | 4 | eqcomi 2804 | . . . 4 ⊢ 0 = Σ𝑦 ∈ ∅ (𝐹‘𝑦) |
6 | sumeq1 14879 | . . . . 5 ⊢ (𝑥 = ∅ → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) | |
7 | 6 | rspceeqv 3577 | . . . 4 ⊢ ((∅ ∈ (𝒫 𝑋 ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
8 | 3, 5, 7 | mp2an 688 | . . 3 ⊢ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) |
9 | 0re 10489 | . . . 4 ⊢ 0 ∈ ℝ | |
10 | eqid 2795 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
11 | 10 | elrnmpt 5710 | . . . 4 ⊢ (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
12 | 9, 11 | ax-mp 5 | . . 3 ⊢ (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
13 | 8, 12 | mpbir 232 | . 2 ⊢ 0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
14 | ne0i 4220 | . 2 ⊢ (0 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅) | |
15 | 13, 14 | ax-mp 5 | 1 ⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 ∩ cin 3858 ∅c0 4211 𝒫 cpw 4453 ↦ cmpt 5041 ran crn 5444 ‘cfv 6225 Fincfn 8357 ℝcr 10382 0cc0 10383 Σcsu 14876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 |
This theorem is referenced by: sge0supre 42213 sge0ltfirp 42224 sge0resplit 42230 |
Copyright terms: Public domain | W3C validator |