MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   GIF version

Theorem ioorf 25608
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorf 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))

Proof of Theorem ioorf
Dummy variables 𝑎 𝑏 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
2 ioof 13487 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6736 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4 ovelrn 7609 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏)))
52, 3, 4mp2b 10 . . 3 (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏))
6 0le0 12367 . . . . . . . . 9 0 ≤ 0
7 df-br 5144 . . . . . . . . 9 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
86, 7mpbi 230 . . . . . . . 8 ⟨0, 0⟩ ∈ ≤
9 0xr 11308 . . . . . . . . 9 0 ∈ ℝ*
10 opelxpi 5722 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
119, 9, 10mp2an 692 . . . . . . . 8 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
128, 11elini 4199 . . . . . . 7 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*))
1312a1i 11 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ 𝑥 = ∅) → ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
14 simplr 769 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 = (𝑎(,)𝑏))
1514infeq1d 9517 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = inf((𝑎(,)𝑏), ℝ*, < ))
16 simplll 775 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 ∈ ℝ*)
17 simpllr 776 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑏 ∈ ℝ*)
18 simpr 484 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
1918neqned 2947 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
2014, 19eqnetrrd 3009 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎(,)𝑏) ≠ ∅)
21 df-ioo 13391 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
22 idd 24 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤 < 𝑏))
23 xrltle 13191 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤𝑏))
24 idd 24 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎 < 𝑤))
25 xrltle 13191 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎𝑤))
2621, 22, 23, 24, 25ixxlb 13409 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2716, 17, 20, 26syl3anc 1373 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2815, 27eqtrd 2777 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = 𝑎)
2914supeq1d 9486 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = sup((𝑎(,)𝑏), ℝ*, < ))
3021, 22, 23, 24, 25ixxub 13408 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3116, 17, 20, 30syl3anc 1373 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3229, 31eqtrd 2777 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = 𝑏)
3328, 32opeq12d 4881 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨𝑎, 𝑏⟩)
34 ioon0 13413 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3534ad2antrr 726 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3620, 35mpbid 232 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 < 𝑏)
37 xrltle 13191 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎 < 𝑏𝑎𝑏))
3837ad2antrr 726 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎 < 𝑏𝑎𝑏))
3936, 38mpd 15 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎𝑏)
40 df-br 5144 . . . . . . . . 9 (𝑎𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ≤ )
4139, 40sylib 218 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ≤ )
42 opelxpi 5722 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4342ad2antrr 726 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4441, 43elind 4200 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4533, 44eqeltrd 2841 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4613, 45ifclda 4561 . . . . 5 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4746ex 412 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*))))
4847rexlimivv 3201 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
495, 48sylbi 217 . 2 (𝑥 ∈ ran (,) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
501, 49fmpti 7132 1 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cin 3950  c0 4333  ifcif 4525  𝒫 cpw 4600  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  ran crn 5686   Fn wfn 6556  wf 6557  (class class class)co 7431  supcsup 9480  infcinf 9481  cr 11154  0cc0 11155  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ioo 13391
This theorem is referenced by:  ioorcl  25612  uniioombllem2  25618
  Copyright terms: Public domain W3C validator