MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   GIF version

Theorem ioorf 24177
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorf 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))

Proof of Theorem ioorf
Dummy variables 𝑎 𝑏 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
2 ioof 12825 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6487 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4 ovelrn 7304 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏)))
52, 3, 4mp2b 10 . . 3 (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏))
6 0le0 11726 . . . . . . . . 9 0 ≤ 0
7 df-br 5031 . . . . . . . . 9 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
86, 7mpbi 233 . . . . . . . 8 ⟨0, 0⟩ ∈ ≤
9 0xr 10677 . . . . . . . . 9 0 ∈ ℝ*
10 opelxpi 5556 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
119, 9, 10mp2an 691 . . . . . . . 8 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
128, 11elini 4120 . . . . . . 7 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*))
1312a1i 11 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ 𝑥 = ∅) → ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
14 simplr 768 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 = (𝑎(,)𝑏))
1514infeq1d 8925 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = inf((𝑎(,)𝑏), ℝ*, < ))
16 simplll 774 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 ∈ ℝ*)
17 simpllr 775 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑏 ∈ ℝ*)
18 simpr 488 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
1918neqned 2994 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
2014, 19eqnetrrd 3055 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎(,)𝑏) ≠ ∅)
21 df-ioo 12730 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
22 idd 24 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤 < 𝑏))
23 xrltle 12530 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤𝑏))
24 idd 24 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎 < 𝑤))
25 xrltle 12530 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎𝑤))
2621, 22, 23, 24, 25ixxlb 12748 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2716, 17, 20, 26syl3anc 1368 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2815, 27eqtrd 2833 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = 𝑎)
2914supeq1d 8894 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = sup((𝑎(,)𝑏), ℝ*, < ))
3021, 22, 23, 24, 25ixxub 12747 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3116, 17, 20, 30syl3anc 1368 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3229, 31eqtrd 2833 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = 𝑏)
3328, 32opeq12d 4773 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨𝑎, 𝑏⟩)
34 ioon0 12752 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3534ad2antrr 725 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3620, 35mpbid 235 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 < 𝑏)
37 xrltle 12530 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎 < 𝑏𝑎𝑏))
3837ad2antrr 725 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎 < 𝑏𝑎𝑏))
3936, 38mpd 15 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎𝑏)
40 df-br 5031 . . . . . . . . 9 (𝑎𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ≤ )
4139, 40sylib 221 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ≤ )
42 opelxpi 5556 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4342ad2antrr 725 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4441, 43elind 4121 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4533, 44eqeltrd 2890 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4613, 45ifclda 4459 . . . . 5 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4746ex 416 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*))))
4847rexlimivv 3251 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
495, 48sylbi 220 . 2 (𝑥 ∈ ran (,) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
501, 49fmpti 6853 1 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cin 3880  c0 4243  ifcif 4425  𝒫 cpw 4497  cop 4531   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520   Fn wfn 6319  wf 6320  (class class class)co 7135  supcsup 8888  infcinf 8889  cr 10525  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730
This theorem is referenced by:  ioorcl  24181  uniioombllem2  24187
  Copyright terms: Public domain W3C validator