MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   GIF version

Theorem ioorf 24737
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorf 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))

Proof of Theorem ioorf
Dummy variables 𝑎 𝑏 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
2 ioof 13179 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6600 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4 ovelrn 7448 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏)))
52, 3, 4mp2b 10 . . 3 (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏))
6 0le0 12074 . . . . . . . . 9 0 ≤ 0
7 df-br 5075 . . . . . . . . 9 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
86, 7mpbi 229 . . . . . . . 8 ⟨0, 0⟩ ∈ ≤
9 0xr 11022 . . . . . . . . 9 0 ∈ ℝ*
10 opelxpi 5626 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
119, 9, 10mp2an 689 . . . . . . . 8 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
128, 11elini 4127 . . . . . . 7 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*))
1312a1i 11 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ 𝑥 = ∅) → ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
14 simplr 766 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 = (𝑎(,)𝑏))
1514infeq1d 9236 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = inf((𝑎(,)𝑏), ℝ*, < ))
16 simplll 772 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 ∈ ℝ*)
17 simpllr 773 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑏 ∈ ℝ*)
18 simpr 485 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
1918neqned 2950 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
2014, 19eqnetrrd 3012 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎(,)𝑏) ≠ ∅)
21 df-ioo 13083 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
22 idd 24 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤 < 𝑏))
23 xrltle 12883 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤𝑏))
24 idd 24 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎 < 𝑤))
25 xrltle 12883 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎𝑤))
2621, 22, 23, 24, 25ixxlb 13101 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2716, 17, 20, 26syl3anc 1370 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2815, 27eqtrd 2778 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = 𝑎)
2914supeq1d 9205 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = sup((𝑎(,)𝑏), ℝ*, < ))
3021, 22, 23, 24, 25ixxub 13100 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3116, 17, 20, 30syl3anc 1370 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3229, 31eqtrd 2778 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = 𝑏)
3328, 32opeq12d 4812 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨𝑎, 𝑏⟩)
34 ioon0 13105 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3534ad2antrr 723 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3620, 35mpbid 231 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 < 𝑏)
37 xrltle 12883 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎 < 𝑏𝑎𝑏))
3837ad2antrr 723 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎 < 𝑏𝑎𝑏))
3936, 38mpd 15 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎𝑏)
40 df-br 5075 . . . . . . . . 9 (𝑎𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ≤ )
4139, 40sylib 217 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ≤ )
42 opelxpi 5626 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4342ad2antrr 723 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4441, 43elind 4128 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4533, 44eqeltrd 2839 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4613, 45ifclda 4494 . . . . 5 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4746ex 413 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*))))
4847rexlimivv 3221 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
495, 48sylbi 216 . 2 (𝑥 ∈ ran (,) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
501, 49fmpti 6986 1 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cin 3886  c0 4256  ifcif 4459  𝒫 cpw 4533  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590   Fn wfn 6428  wf 6429  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  0cc0 10871  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ioo 13083
This theorem is referenced by:  ioorcl  24741  uniioombllem2  24747
  Copyright terms: Public domain W3C validator