MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   GIF version

Theorem ioorf 25526
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorf 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))

Proof of Theorem ioorf
Dummy variables 𝑎 𝑏 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
2 ioof 13464 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6706 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4 ovelrn 7583 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏)))
52, 3, 4mp2b 10 . . 3 (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏))
6 0le0 12341 . . . . . . . . 9 0 ≤ 0
7 df-br 5120 . . . . . . . . 9 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
86, 7mpbi 230 . . . . . . . 8 ⟨0, 0⟩ ∈ ≤
9 0xr 11282 . . . . . . . . 9 0 ∈ ℝ*
10 opelxpi 5691 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
119, 9, 10mp2an 692 . . . . . . . 8 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
128, 11elini 4174 . . . . . . 7 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*))
1312a1i 11 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ 𝑥 = ∅) → ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
14 simplr 768 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 = (𝑎(,)𝑏))
1514infeq1d 9490 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = inf((𝑎(,)𝑏), ℝ*, < ))
16 simplll 774 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 ∈ ℝ*)
17 simpllr 775 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑏 ∈ ℝ*)
18 simpr 484 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
1918neqned 2939 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
2014, 19eqnetrrd 3000 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎(,)𝑏) ≠ ∅)
21 df-ioo 13366 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
22 idd 24 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤 < 𝑏))
23 xrltle 13165 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤𝑏))
24 idd 24 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎 < 𝑤))
25 xrltle 13165 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎𝑤))
2621, 22, 23, 24, 25ixxlb 13384 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2716, 17, 20, 26syl3anc 1373 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2815, 27eqtrd 2770 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = 𝑎)
2914supeq1d 9458 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = sup((𝑎(,)𝑏), ℝ*, < ))
3021, 22, 23, 24, 25ixxub 13383 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3116, 17, 20, 30syl3anc 1373 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3229, 31eqtrd 2770 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = 𝑏)
3328, 32opeq12d 4857 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨𝑎, 𝑏⟩)
34 ioon0 13388 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3534ad2antrr 726 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3620, 35mpbid 232 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 < 𝑏)
37 xrltle 13165 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎 < 𝑏𝑎𝑏))
3837ad2antrr 726 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎 < 𝑏𝑎𝑏))
3936, 38mpd 15 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎𝑏)
40 df-br 5120 . . . . . . . . 9 (𝑎𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ≤ )
4139, 40sylib 218 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ≤ )
42 opelxpi 5691 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4342ad2antrr 726 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4441, 43elind 4175 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4533, 44eqeltrd 2834 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4613, 45ifclda 4536 . . . . 5 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4746ex 412 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*))))
4847rexlimivv 3186 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
495, 48sylbi 217 . 2 (𝑥 ∈ ran (,) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
501, 49fmpti 7102 1 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cin 3925  c0 4308  ifcif 4500  𝒫 cpw 4575  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655   Fn wfn 6526  wf 6527  (class class class)co 7405  supcsup 9452  infcinf 9453  cr 11128  0cc0 11129  *cxr 11268   < clt 11269  cle 11270  (,)cioo 13362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-ioo 13366
This theorem is referenced by:  ioorcl  25530  uniioombllem2  25536
  Copyright terms: Public domain W3C validator