MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc1 Structured version   Visualization version   GIF version

Theorem ovolicc1 25474
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc1.4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
Assertion
Ref Expression
ovolicc1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolicc1
Dummy variables 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ovolicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 iccssre 13451 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ovolcl 25436 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
7 ovolicc.3 . . . . . . . . . . 11 (𝜑𝐴𝐵)
8 df-br 5125 . . . . . . . . . . 11 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
97, 8sylib 218 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ≤ )
101, 2opelxpd 5698 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
119, 10elind 4180 . . . . . . . . 9 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
1211adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
13 0le0 12346 . . . . . . . . . 10 0 ≤ 0
14 df-br 5125 . . . . . . . . . 10 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
1513, 14mpbi 230 . . . . . . . . 9 ⟨0, 0⟩ ∈ ≤
16 0re 11242 . . . . . . . . . 10 0 ∈ ℝ
17 opelxpi 5696 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1816, 16, 17mp2an 692 . . . . . . . . 9 ⟨0, 0⟩ ∈ (ℝ × ℝ)
1915, 18elini 4179 . . . . . . . 8 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
20 ifcl 4551 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
2112, 19, 20sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
22 ovolicc1.4 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
2321, 22fmptd 7109 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 eqid 2736 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
25 eqid 2736 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2624, 25ovolsf 25430 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2723, 26syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2827frnd 6719 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
29 icossxr 13454 . . . 4 (0[,)+∞) ⊆ ℝ*
3028, 29sstrdi 3976 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
31 supxrcl 13336 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3230, 31syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
332, 1resubcld 11670 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ)
3433rexrd 11290 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ*)
35 1nn 12256 . . . . . . 7 1 ∈ ℕ
3635a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ)
37 op1stg 8005 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
381, 2, 37syl2anc 584 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
40 elicc2 13433 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
411, 2, 40syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4241biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4342simp2d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4439, 43eqbrtrd 5146 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥)
4542simp3d 1144 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
46 op2ndg 8006 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
471, 2, 46syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4945, 48breqtrrd 5152 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))
50 fveq2 6881 . . . . . . . . . . 11 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
51 iftrue 4511 . . . . . . . . . . . . 13 (𝑛 = 1 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨𝐴, 𝐵⟩)
52 opex 5444 . . . . . . . . . . . . 13 𝐴, 𝐵⟩ ∈ V
5351, 22, 52fvmpt 6991 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐺‘1) = ⟨𝐴, 𝐵⟩)
5435, 53ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = ⟨𝐴, 𝐵
5550, 54eqtrdi 2787 . . . . . . . . . 10 (𝑛 = 1 → (𝐺𝑛) = ⟨𝐴, 𝐵⟩)
5655fveq2d 6885 . . . . . . . . 9 (𝑛 = 1 → (1st ‘(𝐺𝑛)) = (1st ‘⟨𝐴, 𝐵⟩))
5756breq1d 5134 . . . . . . . 8 (𝑛 = 1 → ((1st ‘(𝐺𝑛)) ≤ 𝑥 ↔ (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥))
5855fveq2d 6885 . . . . . . . . 9 (𝑛 = 1 → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨𝐴, 𝐵⟩))
5958breq2d 5136 . . . . . . . 8 (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩)))
6057, 59anbi12d 632 . . . . . . 7 (𝑛 = 1 → (((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))))
6160rspcev 3606 . . . . . 6 ((1 ∈ ℕ ∧ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6236, 44, 49, 61syl12anc 836 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6362ralrimiva 3133 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
64 ovolficc 25426 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
654, 23, 64syl2anc 584 . . . 4 (𝜑 → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
6663, 65mpbird 257 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺))
6725ovollb2 25447 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
6823, 66, 67syl2anc 584 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
69 addrid 11420 . . . . . . . . 9 (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘)
7069adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘)
71 nnuz 12900 . . . . . . . . . 10 ℕ = (ℤ‘1)
7235, 71eleqtri 2833 . . . . . . . . 9 1 ∈ (ℤ‘1)
7372a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 1 ∈ (ℤ‘1))
74 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
7574, 71eleqtrdi 2845 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
76 rge0ssre 13478 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
7727adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
78 ffvelcdm 7076 . . . . . . . . . . 11 ((seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
7977, 35, 78sylancl 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8076, 79sselid 3961 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℝ)
8180recnd 11268 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℂ)
8223ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
83 elfzuz 13542 . . . . . . . . . . . . 13 (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(1 + 1)))
8483adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘(1 + 1)))
85 df-2 12308 . . . . . . . . . . . . 13 2 = (1 + 1)
8685fveq2i 6884 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
8784, 86eleqtrrdi 2846 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘2))
88 eluz2nn 12903 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
8987, 88syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ)
9024ovolfsval 25428 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
9182, 89, 90syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
92 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1))
9392ifbid 4529 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
94 opex 5444 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ V
9552, 94ifex 4556 . . . . . . . . . . . . . . . 16 if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ V
9693, 22, 95fvmpt 6991 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
9789, 96syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
98 eluz2b3 12943 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
9998simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ≠ 1)
10087, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1)
101100neneqd 2938 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1)
102101iffalsed 4516 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
10397, 102eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = ⟨0, 0⟩)
104103fveq2d 6885 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = (2nd ‘⟨0, 0⟩))
105 c0ex 11234 . . . . . . . . . . . . 13 0 ∈ V
106105, 105op2nd 8002 . . . . . . . . . . . 12 (2nd ‘⟨0, 0⟩) = 0
107104, 106eqtrdi 2787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = 0)
108103fveq2d 6885 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = (1st ‘⟨0, 0⟩))
109105, 105op1st 8001 . . . . . . . . . . . 12 (1st ‘⟨0, 0⟩) = 0
110108, 109eqtrdi 2787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = 0)
111107, 110oveq12d 7428 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = (0 − 0))
112 0m0e0 12365 . . . . . . . . . 10 (0 − 0) = 0
113111, 112eqtrdi 2787 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = 0)
11491, 113eqtrd 2771 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = 0)
11570, 73, 75, 81, 114seqid2 14071 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥))
116 1z 12627 . . . . . . . 8 1 ∈ ℤ
11723adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11824ovolfsval 25428 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
119117, 35, 118sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
12054fveq2i 6884 . . . . . . . . . . 11 (2nd ‘(𝐺‘1)) = (2nd ‘⟨𝐴, 𝐵⟩)
12147adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
122120, 121eqtrid 2783 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (2nd ‘(𝐺‘1)) = 𝐵)
12354fveq2i 6884 . . . . . . . . . . 11 (1st ‘(𝐺‘1)) = (1st ‘⟨𝐴, 𝐵⟩)
12438adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
125123, 124eqtrid 2783 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1st ‘(𝐺‘1)) = 𝐴)
126122, 125oveq12d 7428 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))) = (𝐵𝐴))
127119, 126eqtrd 2771 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = (𝐵𝐴))
128116, 127seq1i 14038 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (𝐵𝐴))
129115, 128eqtr3d 2773 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) = (𝐵𝐴))
13033leidd 11808 . . . . . . 7 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
131130adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝐵𝐴) ≤ (𝐵𝐴))
132129, 131eqbrtrd 5146 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
133132ralrimiva 3133 . . . 4 (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
13427ffnd 6712 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
135 breq1 5127 . . . . . 6 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵𝐴) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
136135ralrn 7083 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
137134, 136syl 17 . . . 4 (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
138133, 137mpbird 257 . . 3 (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴))
139 supxrleub 13347 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
14030, 34, 139syl2anc 584 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
141138, 140mpbird 257 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴))
1426, 32, 34, 68, 141xrletrd 13183 1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930  wss 3931  ifcif 4505  cop 4612   cuni 4888   class class class wbr 5124  cmpt 5206   × cxp 5657  ran crn 5660  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471  cn 12245  2c2 12300  cuz 12857  [,)cico 13369  [,]cicc 13370  ...cfz 13529  seqcseq 14024  abscabs 15258  vol*covol 25420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-ovol 25422
This theorem is referenced by:  ovolicc  25481
  Copyright terms: Public domain W3C validator