MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc1 Structured version   Visualization version   GIF version

Theorem ovolicc1 24585
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc1.4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
Assertion
Ref Expression
ovolicc1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolicc1
Dummy variables 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ovolicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 iccssre 13090 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 583 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ovolcl 24547 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
7 ovolicc.3 . . . . . . . . . . 11 (𝜑𝐴𝐵)
8 df-br 5071 . . . . . . . . . . 11 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
97, 8sylib 217 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ≤ )
101, 2opelxpd 5618 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
119, 10elind 4124 . . . . . . . . 9 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
1211adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
13 0le0 12004 . . . . . . . . . 10 0 ≤ 0
14 df-br 5071 . . . . . . . . . 10 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
1513, 14mpbi 229 . . . . . . . . 9 ⟨0, 0⟩ ∈ ≤
16 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
17 opelxpi 5617 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1816, 16, 17mp2an 688 . . . . . . . . 9 ⟨0, 0⟩ ∈ (ℝ × ℝ)
1915, 18elini 4123 . . . . . . . 8 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
20 ifcl 4501 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
2112, 19, 20sylancl 585 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
22 ovolicc1.4 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
2321, 22fmptd 6970 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 eqid 2738 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
25 eqid 2738 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2624, 25ovolsf 24541 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2723, 26syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2827frnd 6592 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
29 icossxr 13093 . . . 4 (0[,)+∞) ⊆ ℝ*
3028, 29sstrdi 3929 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
31 supxrcl 12978 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3230, 31syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
332, 1resubcld 11333 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ)
3433rexrd 10956 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ*)
35 1nn 11914 . . . . . . 7 1 ∈ ℕ
3635a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ)
37 op1stg 7816 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
381, 2, 37syl2anc 583 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
40 elicc2 13073 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
411, 2, 40syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4241biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4342simp2d 1141 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4439, 43eqbrtrd 5092 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥)
4542simp3d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
46 op2ndg 7817 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
471, 2, 46syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4945, 48breqtrrd 5098 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))
50 fveq2 6756 . . . . . . . . . . 11 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
51 iftrue 4462 . . . . . . . . . . . . 13 (𝑛 = 1 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨𝐴, 𝐵⟩)
52 opex 5373 . . . . . . . . . . . . 13 𝐴, 𝐵⟩ ∈ V
5351, 22, 52fvmpt 6857 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐺‘1) = ⟨𝐴, 𝐵⟩)
5435, 53ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = ⟨𝐴, 𝐵
5550, 54eqtrdi 2795 . . . . . . . . . 10 (𝑛 = 1 → (𝐺𝑛) = ⟨𝐴, 𝐵⟩)
5655fveq2d 6760 . . . . . . . . 9 (𝑛 = 1 → (1st ‘(𝐺𝑛)) = (1st ‘⟨𝐴, 𝐵⟩))
5756breq1d 5080 . . . . . . . 8 (𝑛 = 1 → ((1st ‘(𝐺𝑛)) ≤ 𝑥 ↔ (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥))
5855fveq2d 6760 . . . . . . . . 9 (𝑛 = 1 → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨𝐴, 𝐵⟩))
5958breq2d 5082 . . . . . . . 8 (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩)))
6057, 59anbi12d 630 . . . . . . 7 (𝑛 = 1 → (((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))))
6160rspcev 3552 . . . . . 6 ((1 ∈ ℕ ∧ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6236, 44, 49, 61syl12anc 833 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6362ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
64 ovolficc 24537 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
654, 23, 64syl2anc 583 . . . 4 (𝜑 → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
6663, 65mpbird 256 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺))
6725ovollb2 24558 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
6823, 66, 67syl2anc 583 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
69 addid1 11085 . . . . . . . . 9 (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘)
7069adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘)
71 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
7235, 71eleqtri 2837 . . . . . . . . 9 1 ∈ (ℤ‘1)
7372a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 1 ∈ (ℤ‘1))
74 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
7574, 71eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
76 rge0ssre 13117 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
7727adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
78 ffvelrn 6941 . . . . . . . . . . 11 ((seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
7977, 35, 78sylancl 585 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8076, 79sselid 3915 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℝ)
8180recnd 10934 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℂ)
8223ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
83 elfzuz 13181 . . . . . . . . . . . . 13 (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(1 + 1)))
8483adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘(1 + 1)))
85 df-2 11966 . . . . . . . . . . . . 13 2 = (1 + 1)
8685fveq2i 6759 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
8784, 86eleqtrrdi 2850 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘2))
88 eluz2nn 12553 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
8987, 88syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ)
9024ovolfsval 24539 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
9182, 89, 90syl2anc 583 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
92 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1))
9392ifbid 4479 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
94 opex 5373 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ V
9552, 94ifex 4506 . . . . . . . . . . . . . . . 16 if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ V
9693, 22, 95fvmpt 6857 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
9789, 96syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
98 eluz2b3 12591 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
9998simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ≠ 1)
10087, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1)
101100neneqd 2947 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1)
102101iffalsed 4467 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
10397, 102eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = ⟨0, 0⟩)
104103fveq2d 6760 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = (2nd ‘⟨0, 0⟩))
105 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
106105, 105op2nd 7813 . . . . . . . . . . . 12 (2nd ‘⟨0, 0⟩) = 0
107104, 106eqtrdi 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = 0)
108103fveq2d 6760 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = (1st ‘⟨0, 0⟩))
109105, 105op1st 7812 . . . . . . . . . . . 12 (1st ‘⟨0, 0⟩) = 0
110108, 109eqtrdi 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = 0)
111107, 110oveq12d 7273 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = (0 − 0))
112 0m0e0 12023 . . . . . . . . . 10 (0 − 0) = 0
113111, 112eqtrdi 2795 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = 0)
11491, 113eqtrd 2778 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = 0)
11570, 73, 75, 81, 114seqid2 13697 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥))
116 1z 12280 . . . . . . . 8 1 ∈ ℤ
11723adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11824ovolfsval 24539 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
119117, 35, 118sylancl 585 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
12054fveq2i 6759 . . . . . . . . . . 11 (2nd ‘(𝐺‘1)) = (2nd ‘⟨𝐴, 𝐵⟩)
12147adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
122120, 121syl5eq 2791 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (2nd ‘(𝐺‘1)) = 𝐵)
12354fveq2i 6759 . . . . . . . . . . 11 (1st ‘(𝐺‘1)) = (1st ‘⟨𝐴, 𝐵⟩)
12438adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
125123, 124syl5eq 2791 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1st ‘(𝐺‘1)) = 𝐴)
126122, 125oveq12d 7273 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))) = (𝐵𝐴))
127119, 126eqtrd 2778 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = (𝐵𝐴))
128116, 127seq1i 13663 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (𝐵𝐴))
129115, 128eqtr3d 2780 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) = (𝐵𝐴))
13033leidd 11471 . . . . . . 7 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
131130adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝐵𝐴) ≤ (𝐵𝐴))
132129, 131eqbrtrd 5092 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
133132ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
13427ffnd 6585 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
135 breq1 5073 . . . . . 6 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵𝐴) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
136135ralrn 6946 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
137134, 136syl 17 . . . 4 (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
138133, 137mpbird 256 . . 3 (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴))
139 supxrleub 12989 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
14030, 34, 139syl2anc 583 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
141138, 140mpbird 256 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴))
1426, 32, 34, 68, 141xrletrd 12825 1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  ifcif 4456  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cuz 12511  [,)cico 13010  [,]cicc 13011  ...cfz 13168  seqcseq 13649  abscabs 14873  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ovol 24533
This theorem is referenced by:  ovolicc  24592
  Copyright terms: Public domain W3C validator