MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc1 Structured version   Visualization version   GIF version

Theorem ovolicc1 25565
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc1.4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
Assertion
Ref Expression
ovolicc1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolicc1
Dummy variables 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ovolicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 iccssre 13466 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ovolcl 25527 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
7 ovolicc.3 . . . . . . . . . . 11 (𝜑𝐴𝐵)
8 df-br 5149 . . . . . . . . . . 11 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
97, 8sylib 218 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ≤ )
101, 2opelxpd 5728 . . . . . . . . . 10 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
119, 10elind 4210 . . . . . . . . 9 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
1211adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
13 0le0 12365 . . . . . . . . . 10 0 ≤ 0
14 df-br 5149 . . . . . . . . . 10 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
1513, 14mpbi 230 . . . . . . . . 9 ⟨0, 0⟩ ∈ ≤
16 0re 11261 . . . . . . . . . 10 0 ∈ ℝ
17 opelxpi 5726 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
1816, 16, 17mp2an 692 . . . . . . . . 9 ⟨0, 0⟩ ∈ (ℝ × ℝ)
1915, 18elini 4209 . . . . . . . 8 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
20 ifcl 4576 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
2112, 19, 20sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
22 ovolicc1.4 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
2321, 22fmptd 7134 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
24 eqid 2735 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
25 eqid 2735 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2624, 25ovolsf 25521 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2723, 26syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
2827frnd 6745 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
29 icossxr 13469 . . . 4 (0[,)+∞) ⊆ ℝ*
3028, 29sstrdi 4008 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
31 supxrcl 13354 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3230, 31syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
332, 1resubcld 11689 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ)
3433rexrd 11309 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ*)
35 1nn 12275 . . . . . . 7 1 ∈ ℕ
3635a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ)
37 op1stg 8025 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
381, 2, 37syl2anc 584 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
40 elicc2 13449 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
411, 2, 40syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4241biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4342simp2d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
4439, 43eqbrtrd 5170 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥)
4542simp3d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
46 op2ndg 8026 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
471, 2, 46syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4945, 48breqtrrd 5176 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))
50 fveq2 6907 . . . . . . . . . . 11 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
51 iftrue 4537 . . . . . . . . . . . . 13 (𝑛 = 1 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨𝐴, 𝐵⟩)
52 opex 5475 . . . . . . . . . . . . 13 𝐴, 𝐵⟩ ∈ V
5351, 22, 52fvmpt 7016 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐺‘1) = ⟨𝐴, 𝐵⟩)
5435, 53ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = ⟨𝐴, 𝐵
5550, 54eqtrdi 2791 . . . . . . . . . 10 (𝑛 = 1 → (𝐺𝑛) = ⟨𝐴, 𝐵⟩)
5655fveq2d 6911 . . . . . . . . 9 (𝑛 = 1 → (1st ‘(𝐺𝑛)) = (1st ‘⟨𝐴, 𝐵⟩))
5756breq1d 5158 . . . . . . . 8 (𝑛 = 1 → ((1st ‘(𝐺𝑛)) ≤ 𝑥 ↔ (1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥))
5855fveq2d 6911 . . . . . . . . 9 (𝑛 = 1 → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨𝐴, 𝐵⟩))
5958breq2d 5160 . . . . . . . 8 (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩)))
6057, 59anbi12d 632 . . . . . . 7 (𝑛 = 1 → (((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))))
6160rspcev 3622 . . . . . 6 ((1 ∈ ℕ ∧ ((1st ‘⟨𝐴, 𝐵⟩) ≤ 𝑥𝑥 ≤ (2nd ‘⟨𝐴, 𝐵⟩))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6236, 44, 49, 61syl12anc 837 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
6362ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛))))
64 ovolficc 25517 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
654, 23, 64syl2anc 584 . . . 4 (𝜑 → ((𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
6663, 65mpbird 257 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺))
6725ovollb2 25538 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
6823, 66, 67syl2anc 584 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
69 addrid 11439 . . . . . . . . 9 (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘)
7069adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘)
71 nnuz 12919 . . . . . . . . . 10 ℕ = (ℤ‘1)
7235, 71eleqtri 2837 . . . . . . . . 9 1 ∈ (ℤ‘1)
7372a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 1 ∈ (ℤ‘1))
74 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
7574, 71eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
76 rge0ssre 13493 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
7727adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
78 ffvelcdm 7101 . . . . . . . . . . 11 ((seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
7977, 35, 78sylancl 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ (0[,)+∞))
8076, 79sselid 3993 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℝ)
8180recnd 11287 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈ ℂ)
8223ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
83 elfzuz 13557 . . . . . . . . . . . . 13 (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(1 + 1)))
8483adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘(1 + 1)))
85 df-2 12327 . . . . . . . . . . . . 13 2 = (1 + 1)
8685fveq2i 6910 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
8784, 86eleqtrrdi 2850 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ‘2))
88 eluz2nn 12922 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
8987, 88syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ)
9024ovolfsval 25519 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
9182, 89, 90syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))))
92 eqeq1 2739 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1))
9392ifbid 4554 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
94 opex 5475 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ V
9552, 94ifex 4581 . . . . . . . . . . . . . . . 16 if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) ∈ V
9693, 22, 95fvmpt 7016 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
9789, 96syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
98 eluz2b3 12962 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
9998simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ≠ 1)
10087, 99syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1)
101100neneqd 2943 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1)
102101iffalsed 4542 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = ⟨0, 0⟩)
10397, 102eqtrd 2775 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺𝑘) = ⟨0, 0⟩)
104103fveq2d 6911 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = (2nd ‘⟨0, 0⟩))
105 c0ex 11253 . . . . . . . . . . . . 13 0 ∈ V
106105, 105op2nd 8022 . . . . . . . . . . . 12 (2nd ‘⟨0, 0⟩) = 0
107104, 106eqtrdi 2791 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺𝑘)) = 0)
108103fveq2d 6911 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = (1st ‘⟨0, 0⟩))
109105, 105op1st 8021 . . . . . . . . . . . 12 (1st ‘⟨0, 0⟩) = 0
110108, 109eqtrdi 2791 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺𝑘)) = 0)
111107, 110oveq12d 7449 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = (0 − 0))
112 0m0e0 12384 . . . . . . . . . 10 (0 − 0) = 0
113111, 112eqtrdi 2791 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺𝑘)) − (1st ‘(𝐺𝑘))) = 0)
11491, 113eqtrd 2775 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘ 𝐺)‘𝑘) = 0)
11570, 73, 75, 81, 114seqid2 14086 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥))
116 1z 12645 . . . . . . . 8 1 ∈ ℤ
11723adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11824ovolfsval 25519 . . . . . . . . . 10 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
119117, 35, 118sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))))
12054fveq2i 6910 . . . . . . . . . . 11 (2nd ‘(𝐺‘1)) = (2nd ‘⟨𝐴, 𝐵⟩)
12147adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
122120, 121eqtrid 2787 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (2nd ‘(𝐺‘1)) = 𝐵)
12354fveq2i 6910 . . . . . . . . . . 11 (1st ‘(𝐺‘1)) = (1st ‘⟨𝐴, 𝐵⟩)
12438adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
125123, 124eqtrid 2787 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1st ‘(𝐺‘1)) = 𝐴)
126122, 125oveq12d 7449 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd ‘(𝐺‘1)) − (1st ‘(𝐺‘1))) = (𝐵𝐴))
127119, 126eqtrd 2775 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘1) = (𝐵𝐴))
128116, 127seq1i 14053 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) = (𝐵𝐴))
129115, 128eqtr3d 2777 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) = (𝐵𝐴))
13033leidd 11827 . . . . . . 7 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
131130adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝐵𝐴) ≤ (𝐵𝐴))
132129, 131eqbrtrd 5170 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
133132ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴))
13427ffnd 6738 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
135 breq1 5151 . . . . . 6 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵𝐴) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
136135ralrn 7108 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
137134, 136syl 17 . . . 4 (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵𝐴)))
138133, 137mpbird 257 . . 3 (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴))
139 supxrleub 13365 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
14030, 34, 139syl2anc 584 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵𝐴)))
141138, 140mpbird 257 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵𝐴))
1426, 32, 34, 68, 141xrletrd 13201 1 (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cin 3962  wss 3963  ifcif 4531  cop 4637   cuni 4912   class class class wbr 5148  cmpt 5231   × cxp 5687  ran crn 5690  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  supcsup 9478  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  cuz 12876  [,)cico 13386  [,]cicc 13387  ...cfz 13544  seqcseq 14039  abscabs 15270  vol*covol 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-ovol 25513
This theorem is referenced by:  ovolicc  25572
  Copyright terms: Public domain W3C validator