Step | Hyp | Ref
| Expression |
1 | | ovolicc.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | ovolicc.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | iccssre 13017 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
4 | 1, 2, 3 | syl2anc 587 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
5 | | ovolcl 24375 |
. . 3
⊢ ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈
ℝ*) |
6 | 4, 5 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ∈
ℝ*) |
7 | | ovolicc.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
8 | | df-br 5054 |
. . . . . . . . . . 11
⊢ (𝐴 ≤ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≤ ) |
9 | 7, 8 | sylib 221 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ ≤ ) |
10 | 1, 2 | opelxpd 5589 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (ℝ ×
ℝ)) |
11 | 9, 10 | elind 4108 |
. . . . . . . . 9
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
12 | 11 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝐴, 𝐵〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
13 | | 0le0 11931 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
14 | | df-br 5054 |
. . . . . . . . . 10
⊢ (0 ≤ 0
↔ 〈0, 0〉 ∈ ≤ ) |
15 | 13, 14 | mpbi 233 |
. . . . . . . . 9
⊢ 〈0,
0〉 ∈ ≤ |
16 | | 0re 10835 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
17 | | opelxpi 5588 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ
× ℝ)) |
18 | 16, 16, 17 | mp2an 692 |
. . . . . . . . 9
⊢ 〈0,
0〉 ∈ (ℝ × ℝ) |
19 | 15, 18 | elini 4107 |
. . . . . . . 8
⊢ 〈0,
0〉 ∈ ( ≤ ∩ (ℝ × ℝ)) |
20 | | ifcl 4484 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 ∈ ( ≤ ∩
(ℝ × ℝ)) ∧ 〈0, 0〉 ∈ ( ≤ ∩ (ℝ
× ℝ))) → if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) ∈ ( ≤
∩ (ℝ × ℝ))) |
21 | 12, 19, 20 | sylancl 589 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) ∈ ( ≤
∩ (ℝ × ℝ))) |
22 | | ovolicc1.4 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
23 | 21, 22 | fmptd 6931 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
24 | | eqid 2737 |
. . . . . . 7
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
25 | | eqid 2737 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − )
∘ 𝐺)) |
26 | 24, 25 | ovolsf 24369 |
. . . . . 6
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝐺)):ℕ⟶(0[,)+∞)) |
27 | 23, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)):ℕ⟶(0[,)+∞)) |
28 | 27 | frnd 6553 |
. . . 4
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞)) |
29 | | icossxr 13020 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ* |
30 | 28, 29 | sstrdi 3913 |
. . 3
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆
ℝ*) |
31 | | supxrcl 12905 |
. . 3
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* →
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
32 | 30, 31 | syl 17 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
33 | 2, 1 | resubcld 11260 |
. . 3
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
34 | 33 | rexrd 10883 |
. 2
⊢ (𝜑 → (𝐵 − 𝐴) ∈
ℝ*) |
35 | | 1nn 11841 |
. . . . . . 7
⊢ 1 ∈
ℕ |
36 | 35 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 1 ∈ ℕ) |
37 | | op1stg 7773 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
38 | 1, 2, 37 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
39 | 38 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
40 | | elicc2 13000 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
41 | 1, 2, 40 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
42 | 41 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
43 | 42 | simp2d 1145 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
44 | 39, 43 | eqbrtrd 5075 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (1st ‘〈𝐴, 𝐵〉) ≤ 𝑥) |
45 | 42 | simp3d 1146 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
46 | | op2ndg 7774 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
47 | 1, 2, 46 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
48 | 47 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
49 | 45, 48 | breqtrrd 5081 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ (2nd ‘〈𝐴, 𝐵〉)) |
50 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (𝐺‘𝑛) = (𝐺‘1)) |
51 | | iftrue 4445 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = 〈𝐴, 𝐵〉) |
52 | | opex 5348 |
. . . . . . . . . . . . 13
⊢
〈𝐴, 𝐵〉 ∈ V |
53 | 51, 22, 52 | fvmpt 6818 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℕ → (𝐺‘1)
= 〈𝐴, 𝐵〉) |
54 | 35, 53 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐺‘1) = 〈𝐴, 𝐵〉 |
55 | 50, 54 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (𝐺‘𝑛) = 〈𝐴, 𝐵〉) |
56 | 55 | fveq2d 6721 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (1st
‘(𝐺‘𝑛)) = (1st
‘〈𝐴, 𝐵〉)) |
57 | 56 | breq1d 5063 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ↔ (1st ‘〈𝐴, 𝐵〉) ≤ 𝑥)) |
58 | 55 | fveq2d 6721 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (2nd
‘(𝐺‘𝑛)) = (2nd
‘〈𝐴, 𝐵〉)) |
59 | 58 | breq2d 5065 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝑥 ≤ (2nd ‘(𝐺‘𝑛)) ↔ 𝑥 ≤ (2nd ‘〈𝐴, 𝐵〉))) |
60 | 57, 59 | anbi12d 634 |
. . . . . . 7
⊢ (𝑛 = 1 → (((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))) ↔ ((1st
‘〈𝐴, 𝐵〉) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘〈𝐴, 𝐵〉)))) |
61 | 60 | rspcev 3537 |
. . . . . 6
⊢ ((1
∈ ℕ ∧ ((1st ‘〈𝐴, 𝐵〉) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘〈𝐴, 𝐵〉))) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛)))) |
62 | 36, 44, 49, 61 | syl12anc 837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛)))) |
63 | 62 | ralrimiva 3105 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛)))) |
64 | | ovolficc 24365 |
. . . . 5
⊢ (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) → ((𝐴[,]𝐵) ⊆ ∪ ran
([,] ∘ 𝐺) ↔
∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
65 | 4, 23, 64 | syl2anc 587 |
. . . 4
⊢ (𝜑 → ((𝐴[,]𝐵) ⊆ ∪ ran
([,] ∘ 𝐺) ↔
∀𝑥 ∈ (𝐴[,]𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
66 | 63, 65 | mpbird 260 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ ran
([,] ∘ 𝐺)) |
67 | 25 | ovollb2 24386 |
. . 3
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐴[,]𝐵) ⊆ ∪ ran
([,] ∘ 𝐺)) →
(vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, <
)) |
68 | 23, 66, 67 | syl2anc 587 |
. 2
⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝐺)),
ℝ*, < )) |
69 | | addid1 11012 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℂ → (𝑘 + 0) = 𝑘) |
70 | 69 | adantl 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ℂ) → (𝑘 + 0) = 𝑘) |
71 | | nnuz 12477 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
72 | 35, 71 | eleqtri 2836 |
. . . . . . . . 9
⊢ 1 ∈
(ℤ≥‘1) |
73 | 72 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 1 ∈
(ℤ≥‘1)) |
74 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ) |
75 | 74, 71 | eleqtrdi 2848 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
(ℤ≥‘1)) |
76 | | rge0ssre 13044 |
. . . . . . . . . 10
⊢
(0[,)+∞) ⊆ ℝ |
77 | 27 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → seq1( + , ((abs
∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞)) |
78 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((seq1( +
, ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) ∧ 1
∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘1) ∈
(0[,)+∞)) |
79 | 77, 35, 78 | sylancl 589 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) ∈
(0[,)+∞)) |
80 | 76, 79 | sseldi 3899 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) ∈ ℝ) |
81 | 80 | recnd 10861 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) ∈ ℂ) |
82 | 23 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
83 | | elfzuz 13108 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((1 + 1)...𝑥) → 𝑘 ∈ (ℤ≥‘(1 +
1))) |
84 | 83 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ (ℤ≥‘(1 +
1))) |
85 | | df-2 11893 |
. . . . . . . . . . . . 13
⊢ 2 = (1 +
1) |
86 | 85 | fveq2i 6720 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
87 | 84, 86 | eleqtrrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈
(ℤ≥‘2)) |
88 | | eluz2nn 12480 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℕ) |
89 | 87, 88 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ∈ ℕ) |
90 | 24 | ovolfsval 24367 |
. . . . . . . . . 10
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑘) = ((2nd ‘(𝐺‘𝑘)) − (1st ‘(𝐺‘𝑘)))) |
91 | 82, 89, 90 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘
𝐺)‘𝑘) = ((2nd ‘(𝐺‘𝑘)) − (1st ‘(𝐺‘𝑘)))) |
92 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (𝑛 = 1 ↔ 𝑘 = 1)) |
93 | 92 | ifbid 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = if(𝑘 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
94 | | opex 5348 |
. . . . . . . . . . . . . . . . 17
⊢ 〈0,
0〉 ∈ V |
95 | 52, 94 | ifex 4489 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑘 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) ∈
V |
96 | 93, 22, 95 | fvmpt 6818 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = if(𝑘 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
97 | 89, 96 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺‘𝑘) = if(𝑘 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
98 | | eluz2b3 12518 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(ℤ≥‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1)) |
99 | 98 | simprbi 500 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ≠ 1) |
100 | 87, 99 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → 𝑘 ≠ 1) |
101 | 100 | neneqd 2945 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ¬ 𝑘 = 1) |
102 | 101 | iffalsed 4450 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → if(𝑘 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = 〈0,
0〉) |
103 | 97, 102 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (𝐺‘𝑘) = 〈0, 0〉) |
104 | 103 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺‘𝑘)) = (2nd ‘〈0,
0〉)) |
105 | | c0ex 10827 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
106 | 105, 105 | op2nd 7770 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈0, 0〉) = 0 |
107 | 104, 106 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (2nd ‘(𝐺‘𝑘)) = 0) |
108 | 103 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺‘𝑘)) = (1st ‘〈0,
0〉)) |
109 | 105, 105 | op1st 7769 |
. . . . . . . . . . . 12
⊢
(1st ‘〈0, 0〉) = 0 |
110 | 108, 109 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (1st ‘(𝐺‘𝑘)) = 0) |
111 | 107, 110 | oveq12d 7231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺‘𝑘)) − (1st ‘(𝐺‘𝑘))) = (0 − 0)) |
112 | | 0m0e0 11950 |
. . . . . . . . . 10
⊢ (0
− 0) = 0 |
113 | 111, 112 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → ((2nd ‘(𝐺‘𝑘)) − (1st ‘(𝐺‘𝑘))) = 0) |
114 | 91, 113 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ ((1 + 1)...𝑥)) → (((abs ∘ − ) ∘
𝐺)‘𝑘) = 0) |
115 | 70, 73, 75, 81, 114 | seqid2 13622 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) = (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑥)) |
116 | | 1z 12207 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
117 | 23 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
118 | 24 | ovolfsval 24367 |
. . . . . . . . . 10
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
119 | 117, 35, 118 | sylancl 589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
120 | 54 | fveq2i 6720 |
. . . . . . . . . . 11
⊢
(2nd ‘(𝐺‘1)) = (2nd
‘〈𝐴, 𝐵〉) |
121 | 47 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
122 | 120, 121 | syl5eq 2790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (2nd
‘(𝐺‘1)) = 𝐵) |
123 | 54 | fveq2i 6720 |
. . . . . . . . . . 11
⊢
(1st ‘(𝐺‘1)) = (1st
‘〈𝐴, 𝐵〉) |
124 | 38 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
125 | 123, 124 | syl5eq 2790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (1st
‘(𝐺‘1)) = 𝐴) |
126 | 122, 125 | oveq12d 7231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((2nd
‘(𝐺‘1)) −
(1st ‘(𝐺‘1))) = (𝐵 − 𝐴)) |
127 | 119, 126 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = (𝐵 − 𝐴)) |
128 | 116, 127 | seq1i 13588 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) = (𝐵 − 𝐴)) |
129 | 115, 128 | eqtr3d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑥) = (𝐵 − 𝐴)) |
130 | 33 | leidd 11398 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
131 | 130 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
132 | 129, 131 | eqbrtrd 5075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑥) ≤ (𝐵 − 𝐴)) |
133 | 132 | ralrimiva 3105 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑥) ≤ (𝐵 − 𝐴)) |
134 | 27 | ffnd 6546 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)) Fn
ℕ) |
135 | | breq1 5056 |
. . . . . 6
⊢ (𝑧 = (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑥) → (𝑧 ≤ (𝐵 − 𝐴) ↔ (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑥) ≤ (𝐵 − 𝐴))) |
136 | 135 | ralrn 6907 |
. . . . 5
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑧 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵 − 𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑥) ≤ (𝐵 − 𝐴))) |
137 | 134, 136 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑧 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑧 ≤ (𝐵 − 𝐴) ↔ ∀𝑥 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑥) ≤ (𝐵 − 𝐴))) |
138 | 133, 137 | mpbird 260 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑧 ≤ (𝐵 − 𝐴)) |
139 | | supxrleub 12916 |
. . . 4
⊢ ((ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (𝐵 − 𝐴) ∈ ℝ*) →
(sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵 − 𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑧 ≤ (𝐵 − 𝐴))) |
140 | 30, 34, 139 | syl2anc 587 |
. . 3
⊢ (𝜑 → (sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵 − 𝐴) ↔ ∀𝑧 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑧 ≤ (𝐵 − 𝐴))) |
141 | 138, 140 | mpbird 260 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (𝐵 − 𝐴)) |
142 | 6, 32, 34, 68, 141 | xrletrd 12752 |
1
⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) |