| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
| 2 | 1 | uniex 7674 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
| 3 | axac3 10355 | . . . . 5 ⊢ CHOICE | |
| 4 | acufl 23832 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
| 6 | 2, 5 | eleqtrri 2830 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
| 7 | cardeqv 10360 | . . . 4 ⊢ dom card = V | |
| 8 | 2, 7 | eleqtrri 2830 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
| 9 | 6, 8 | elini 4146 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
| 10 | eqid 2731 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
| 11 | eqid 2731 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
| 12 | 10, 11 | ptcmpg 23972 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 13 | 9, 12 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∪ cuni 4856 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 cardccrd 9828 CHOICEwac 10006 ∏tcpt 17342 Compccmp 23301 UFLcufl 23815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-fin 8873 df-fi 9295 df-wdom 9451 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-topgen 17347 df-pt 17348 df-fbas 21288 df-fg 21289 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-cmp 23302 df-fil 23761 df-ufil 23816 df-ufl 23817 df-flim 23854 df-fcls 23856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |