![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6424 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
2 | 1 | uniex 7187 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
3 | axac3 9574 | . . . . 5 ⊢ CHOICE | |
4 | acufl 22049 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
6 | 2, 5 | eleqtrri 2877 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
7 | cardeqv 9579 | . . . 4 ⊢ dom card = V | |
8 | 2, 7 | eleqtrri 2877 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
9 | elin 3994 | . . 3 ⊢ (∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) ↔ (∪ (∏t‘𝐹) ∈ UFL ∧ ∪ (∏t‘𝐹) ∈ dom card)) | |
10 | 6, 8, 9 | mpbir2an 703 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
11 | eqid 2799 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
12 | eqid 2799 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
13 | 11, 12 | ptcmpg 22189 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
14 | 10, 13 | mp3an3 1575 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 ∪ cuni 4628 dom cdm 5312 ⟶wf 6097 ‘cfv 6101 cardccrd 9047 CHOICEwac 9224 ∏tcpt 16414 Compccmp 21518 UFLcufl 22032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-ac2 9573 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-rpss 7171 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-wdom 8706 df-card 9051 df-acn 9054 df-ac 9225 df-cda 9278 df-topgen 16419 df-pt 16420 df-fbas 20065 df-fg 20066 df-top 21027 df-topon 21044 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-cmp 21519 df-fil 21978 df-ufil 22033 df-ufl 22034 df-flim 22071 df-fcls 22073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |