MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmp Structured version   Visualization version   GIF version

Theorem ptcmp 23952
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ptcmp ((𝐴𝑉𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)

Proof of Theorem ptcmp
StepHypRef Expression
1 fvex 6874 . . . . 5 (∏t𝐹) ∈ V
21uniex 7720 . . . 4 (∏t𝐹) ∈ V
3 axac3 10424 . . . . 5 CHOICE
4 acufl 23811 . . . . 5 (CHOICE → UFL = V)
53, 4ax-mp 5 . . . 4 UFL = V
62, 5eleqtrri 2828 . . 3 (∏t𝐹) ∈ UFL
7 cardeqv 10429 . . . 4 dom card = V
82, 7eleqtrri 2828 . . 3 (∏t𝐹) ∈ dom card
96, 8elini 4165 . 2 (∏t𝐹) ∈ (UFL ∩ dom card)
10 eqid 2730 . . 3 (∏t𝐹) = (∏t𝐹)
11 eqid 2730 . . 3 (∏t𝐹) = (∏t𝐹)
1210, 11ptcmpg 23951 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ (∏t𝐹) ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
139, 12mp3an3 1452 1 ((𝐴𝑉𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916   cuni 4874  dom cdm 5641  wf 6510  cfv 6514  cardccrd 9895  CHOICEwac 10075  tcpt 17408  Compccmp 23280  UFLcufl 23794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-wdom 9525  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-topgen 17413  df-pt 17414  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cmp 23281  df-fil 23740  df-ufil 23795  df-ufl 23796  df-flim 23833  df-fcls 23835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator