Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6781 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
2 | 1 | uniex 7585 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
3 | axac3 10204 | . . . . 5 ⊢ CHOICE | |
4 | acufl 23049 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
6 | 2, 5 | eleqtrri 2839 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
7 | cardeqv 10209 | . . . 4 ⊢ dom card = V | |
8 | 2, 7 | eleqtrri 2839 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
9 | 6, 8 | elini 4131 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
10 | eqid 2739 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
11 | eqid 2739 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
12 | 10, 11 | ptcmpg 23189 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
13 | 9, 12 | mp3an3 1448 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ∪ cuni 4844 dom cdm 5588 ⟶wf 6426 ‘cfv 6430 cardccrd 9677 CHOICEwac 9855 ∏tcpt 17130 Compccmp 22518 UFLcufl 23032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-ac2 10203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rpss 7567 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-fin 8711 df-fi 9131 df-wdom 9285 df-dju 9643 df-card 9681 df-acn 9684 df-ac 9856 df-topgen 17135 df-pt 17136 df-fbas 20575 df-fg 20576 df-top 22024 df-topon 22041 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-nei 22230 df-cmp 22519 df-fil 22978 df-ufil 23033 df-ufl 23034 df-flim 23071 df-fcls 23073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |