![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6905 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
2 | 1 | uniex 7731 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
3 | axac3 10459 | . . . . 5 ⊢ CHOICE | |
4 | acufl 23421 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
6 | 2, 5 | eleqtrri 2833 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
7 | cardeqv 10464 | . . . 4 ⊢ dom card = V | |
8 | 2, 7 | eleqtrri 2833 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
9 | 6, 8 | elini 4194 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
10 | eqid 2733 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
11 | eqid 2733 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
12 | 10, 11 | ptcmpg 23561 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
13 | 9, 12 | mp3an3 1451 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 ∪ cuni 4909 dom cdm 5677 ⟶wf 6540 ‘cfv 6544 cardccrd 9930 CHOICEwac 10110 ∏tcpt 17384 Compccmp 22890 UFLcufl 23404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-ac2 10458 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-rpss 7713 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-fin 8943 df-fi 9406 df-wdom 9560 df-dju 9896 df-card 9934 df-acn 9937 df-ac 10111 df-topgen 17389 df-pt 17390 df-fbas 20941 df-fg 20942 df-top 22396 df-topon 22413 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-cmp 22891 df-fil 23350 df-ufil 23405 df-ufl 23406 df-flim 23443 df-fcls 23445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |