| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
| 2 | 1 | uniex 7740 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
| 3 | axac3 10483 | . . . . 5 ⊢ CHOICE | |
| 4 | acufl 23860 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
| 6 | 2, 5 | eleqtrri 2834 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
| 7 | cardeqv 10488 | . . . 4 ⊢ dom card = V | |
| 8 | 2, 7 | eleqtrri 2834 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
| 9 | 6, 8 | elini 4179 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
| 10 | eqid 2736 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
| 11 | eqid 2736 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
| 12 | 10, 11 | ptcmpg 24000 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 13 | 9, 12 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ∪ cuni 4888 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 cardccrd 9954 CHOICEwac 10134 ∏tcpt 17457 Compccmp 23329 UFLcufl 23843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rpss 7722 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-fin 8968 df-fi 9428 df-wdom 9584 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-topgen 17462 df-pt 17463 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-cmp 23330 df-fil 23789 df-ufil 23844 df-ufl 23845 df-flim 23882 df-fcls 23884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |