Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
2 | 1 | uniex 7626 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
3 | axac3 10270 | . . . . 5 ⊢ CHOICE | |
4 | acufl 23117 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
6 | 2, 5 | eleqtrri 2836 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
7 | cardeqv 10275 | . . . 4 ⊢ dom card = V | |
8 | 2, 7 | eleqtrri 2836 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
9 | 6, 8 | elini 4133 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
10 | eqid 2736 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
11 | eqid 2736 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
12 | 10, 11 | ptcmpg 23257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
13 | 9, 12 | mp3an3 1450 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ∪ cuni 4844 dom cdm 5600 ⟶wf 6454 ‘cfv 6458 cardccrd 9741 CHOICEwac 9921 ∏tcpt 17198 Compccmp 22586 UFLcufl 23100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-ac2 10269 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-rpss 7608 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-omul 8333 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-fin 8768 df-fi 9218 df-wdom 9372 df-dju 9707 df-card 9745 df-acn 9748 df-ac 9922 df-topgen 17203 df-pt 17204 df-fbas 20643 df-fg 20644 df-top 22092 df-topon 22109 df-bases 22145 df-cld 22219 df-ntr 22220 df-cls 22221 df-nei 22298 df-cmp 22587 df-fil 23046 df-ufil 23101 df-ufl 23102 df-flim 23139 df-fcls 23141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |