| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
| 2 | 1 | uniex 7677 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
| 3 | axac3 10358 | . . . . 5 ⊢ CHOICE | |
| 4 | acufl 23802 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
| 6 | 2, 5 | eleqtrri 2827 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
| 7 | cardeqv 10363 | . . . 4 ⊢ dom card = V | |
| 8 | 2, 7 | eleqtrri 2827 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
| 9 | 6, 8 | elini 4150 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
| 10 | eqid 2729 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
| 11 | eqid 2729 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
| 12 | 10, 11 | ptcmpg 23942 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 13 | 9, 12 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ∪ cuni 4858 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 cardccrd 9831 CHOICEwac 10009 ∏tcpt 17342 Compccmp 23271 UFLcufl 23785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-rpss 7659 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-fin 8876 df-fi 9301 df-wdom 9457 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-topgen 17347 df-pt 17348 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cmp 23272 df-fil 23731 df-ufil 23786 df-ufl 23787 df-flim 23824 df-fcls 23826 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |