![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6910 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
2 | 1 | uniex 7746 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
3 | axac3 10487 | . . . . 5 ⊢ CHOICE | |
4 | acufl 23820 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
6 | 2, 5 | eleqtrri 2828 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
7 | cardeqv 10492 | . . . 4 ⊢ dom card = V | |
8 | 2, 7 | eleqtrri 2828 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
9 | 6, 8 | elini 4193 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
10 | eqid 2728 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
11 | eqid 2728 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
12 | 10, 11 | ptcmpg 23960 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
13 | 9, 12 | mp3an3 1447 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 ∪ cuni 4908 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 cardccrd 9958 CHOICEwac 10138 ∏tcpt 17419 Compccmp 23289 UFLcufl 23803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-ac2 10486 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-rpss 7728 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-fin 8967 df-fi 9434 df-wdom 9588 df-dju 9924 df-card 9962 df-acn 9965 df-ac 10139 df-topgen 17424 df-pt 17425 df-fbas 21275 df-fg 21276 df-top 22795 df-topon 22812 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-cmp 23290 df-fil 23749 df-ufil 23804 df-ufl 23805 df-flim 23842 df-fcls 23844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |