MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmp Structured version   Visualization version   GIF version

Theorem ptcmp 23921
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ptcmp ((𝐴𝑉𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)

Proof of Theorem ptcmp
StepHypRef Expression
1 fvex 6853 . . . . 5 (∏t𝐹) ∈ V
21uniex 7697 . . . 4 (∏t𝐹) ∈ V
3 axac3 10393 . . . . 5 CHOICE
4 acufl 23780 . . . . 5 (CHOICE → UFL = V)
53, 4ax-mp 5 . . . 4 UFL = V
62, 5eleqtrri 2827 . . 3 (∏t𝐹) ∈ UFL
7 cardeqv 10398 . . . 4 dom card = V
82, 7eleqtrri 2827 . . 3 (∏t𝐹) ∈ dom card
96, 8elini 4158 . 2 (∏t𝐹) ∈ (UFL ∩ dom card)
10 eqid 2729 . . 3 (∏t𝐹) = (∏t𝐹)
11 eqid 2729 . . 3 (∏t𝐹) = (∏t𝐹)
1210, 11ptcmpg 23920 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ (∏t𝐹) ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
139, 12mp3an3 1452 1 ((𝐴𝑉𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910   cuni 4867  dom cdm 5631  wf 6495  cfv 6499  cardccrd 9864  CHOICEwac 10044  tcpt 17377  Compccmp 23249  UFLcufl 23763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338  df-wdom 9494  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-topgen 17382  df-pt 17383  df-fbas 21237  df-fg 21238  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cmp 23250  df-fil 23709  df-ufil 23764  df-ufl 23765  df-flim 23802  df-fcls 23804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator