| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmp | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmp | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . 5 ⊢ (∏t‘𝐹) ∈ V | |
| 2 | 1 | uniex 7717 | . . . 4 ⊢ ∪ (∏t‘𝐹) ∈ V |
| 3 | axac3 10417 | . . . . 5 ⊢ CHOICE | |
| 4 | acufl 23804 | . . . . 5 ⊢ (CHOICE → UFL = V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ UFL = V |
| 6 | 2, 5 | eleqtrri 2827 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ UFL |
| 7 | cardeqv 10422 | . . . 4 ⊢ dom card = V | |
| 8 | 2, 7 | eleqtrri 2827 | . . 3 ⊢ ∪ (∏t‘𝐹) ∈ dom card |
| 9 | 6, 8 | elini 4162 | . 2 ⊢ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card) |
| 10 | eqid 2729 | . . 3 ⊢ (∏t‘𝐹) = (∏t‘𝐹) | |
| 11 | eqid 2729 | . . 3 ⊢ ∪ (∏t‘𝐹) = ∪ (∏t‘𝐹) | |
| 12 | 10, 11 | ptcmpg 23944 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ ∪ (∏t‘𝐹) ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 13 | 9, 12 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∪ cuni 4871 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 cardccrd 9888 CHOICEwac 10068 ∏tcpt 17401 Compccmp 23273 UFLcufl 23787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-fin 8922 df-fi 9362 df-wdom 9518 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-topgen 17406 df-pt 17407 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cmp 23274 df-fil 23733 df-ufil 23788 df-ufl 23789 df-flim 23826 df-fcls 23828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |