| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restuni4 | Structured version Visualization version GIF version | ||
| Description: The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| restuni4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| restuni4.2 | ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) |
| Ref | Expression |
|---|---|
| restuni4 | ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . . 3 ⊢ (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵)) |
| 3 | restuni4.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) | |
| 4 | dfss 3950 | . . 3 ⊢ (𝐵 ⊆ ∪ 𝐴 ↔ 𝐵 = (𝐵 ∩ ∪ 𝐴)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → 𝐵 = (𝐵 ∩ ∪ 𝐴)) |
| 6 | restuni4.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | 6 | uniexd 7744 | . . . 4 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
| 8 | 7, 3 | ssexd 5304 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 9 | 6, 8 | restuni3 45095 | . 2 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) |
| 10 | 2, 5, 9 | 3eqtr4rd 2780 | 1 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4887 (class class class)co 7413 ↾t crest 17437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-rest 17439 |
| This theorem is referenced by: restuni6 45099 restuni5 45100 subsaluni 46347 issmflelem 46731 issmfgtlem 46742 issmfgt 46743 issmfgelem 46756 smfresal 46775 |
| Copyright terms: Public domain | W3C validator |