Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni4 Structured version   Visualization version   GIF version

Theorem restuni4 45131
Description: The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni4.1 (𝜑𝐴𝑉)
restuni4.2 (𝜑𝐵 𝐴)
Assertion
Ref Expression
restuni4 (𝜑 (𝐴t 𝐵) = 𝐵)

Proof of Theorem restuni4
StepHypRef Expression
1 incom 4208 . . 3 (𝐵 𝐴) = ( 𝐴𝐵)
21a1i 11 . 2 (𝜑 → (𝐵 𝐴) = ( 𝐴𝐵))
3 restuni4.2 . . 3 (𝜑𝐵 𝐴)
4 dfss 3969 . . 3 (𝐵 𝐴𝐵 = (𝐵 𝐴))
53, 4sylib 218 . 2 (𝜑𝐵 = (𝐵 𝐴))
6 restuni4.1 . . 3 (𝜑𝐴𝑉)
76uniexd 7763 . . . 4 (𝜑 𝐴 ∈ V)
87, 3ssexd 5323 . . 3 (𝜑𝐵 ∈ V)
96, 8restuni3 45128 . 2 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
102, 5, 93eqtr4rd 2787 1 (𝜑 (𝐴t 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  cin 3949  wss 3950   cuni 4906  (class class class)co 7432  t crest 17466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-rest 17468
This theorem is referenced by:  restuni6  45132  restuni5  45133  subsaluni  46380  issmflelem  46764  issmfgtlem  46775  issmfgt  46776  issmfgelem  46789  smfresal  46808
  Copyright terms: Public domain W3C validator