![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restuni4 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
restuni4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
restuni4.2 | ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) |
Ref | Expression |
---|---|
restuni4 | ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4196 | . . 3 ⊢ (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵)) |
3 | restuni4.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) | |
4 | dfss 3961 | . . 3 ⊢ (𝐵 ⊆ ∪ 𝐴 ↔ 𝐵 = (𝐵 ∩ ∪ 𝐴)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → 𝐵 = (𝐵 ∩ ∪ 𝐴)) |
6 | restuni4.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | 6 | uniexd 7729 | . . . 4 ⊢ (𝜑 → ∪ 𝐴 ∈ V) |
8 | 7, 3 | ssexd 5317 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
9 | 6, 8 | restuni3 44382 | . 2 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) |
10 | 2, 5, 9 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∩ cin 3942 ⊆ wss 3943 ∪ cuni 4902 (class class class)co 7405 ↾t crest 17375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rest 17377 |
This theorem is referenced by: restuni6 44386 restuni5 44387 subsaluni 45648 issmflelem 46032 issmfgtlem 46043 issmfgt 46044 issmfgelem 46057 smfresal 46076 |
Copyright terms: Public domain | W3C validator |