|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restuni4 | Structured version Visualization version GIF version | ||
| Description: The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| restuni4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| restuni4.2 | ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) | 
| Ref | Expression | 
|---|---|
| restuni4 | ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | incom 4208 | . . 3 ⊢ (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵)) | 
| 3 | restuni4.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) | |
| 4 | dfss 3969 | . . 3 ⊢ (𝐵 ⊆ ∪ 𝐴 ↔ 𝐵 = (𝐵 ∩ ∪ 𝐴)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → 𝐵 = (𝐵 ∩ ∪ 𝐴)) | 
| 6 | restuni4.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | 6 | uniexd 7763 | . . . 4 ⊢ (𝜑 → ∪ 𝐴 ∈ V) | 
| 8 | 7, 3 | ssexd 5323 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | 
| 9 | 6, 8 | restuni3 45128 | . 2 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) | 
| 10 | 2, 5, 9 | 3eqtr4rd 2787 | 1 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∩ cin 3949 ⊆ wss 3950 ∪ cuni 4906 (class class class)co 7432 ↾t crest 17466 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-rest 17468 | 
| This theorem is referenced by: restuni6 45132 restuni5 45133 subsaluni 46380 issmflelem 46764 issmfgtlem 46775 issmfgt 46776 issmfgelem 46789 smfresal 46808 | 
| Copyright terms: Public domain | W3C validator |