Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni4 Structured version   Visualization version   GIF version

Theorem restuni4 45115
Description: The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni4.1 (𝜑𝐴𝑉)
restuni4.2 (𝜑𝐵 𝐴)
Assertion
Ref Expression
restuni4 (𝜑 (𝐴t 𝐵) = 𝐵)

Proof of Theorem restuni4
StepHypRef Expression
1 incom 4172 . . 3 (𝐵 𝐴) = ( 𝐴𝐵)
21a1i 11 . 2 (𝜑 → (𝐵 𝐴) = ( 𝐴𝐵))
3 restuni4.2 . . 3 (𝜑𝐵 𝐴)
4 dfss 3933 . . 3 (𝐵 𝐴𝐵 = (𝐵 𝐴))
53, 4sylib 218 . 2 (𝜑𝐵 = (𝐵 𝐴))
6 restuni4.1 . . 3 (𝜑𝐴𝑉)
76uniexd 7718 . . . 4 (𝜑 𝐴 ∈ V)
87, 3ssexd 5279 . . 3 (𝜑𝐵 ∈ V)
96, 8restuni3 45112 . 2 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
102, 5, 93eqtr4rd 2775 1 (𝜑 (𝐴t 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914   cuni 4871  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  restuni6  45116  restuni5  45117  subsaluni  46358  issmflelem  46742  issmfgtlem  46753  issmfgt  46754  issmfgelem  46767  smfresal  46786
  Copyright terms: Public domain W3C validator