MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Structured version   Visualization version   GIF version

Theorem eltopss 22934
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 4961 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2sseqtrrdi 4060 . 2 (𝐴𝐽𝐴𝑋)
43adantl 481 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by:  riinopn  22935  opncld  23062  ntrval2  23080  ntrss3  23089  cmclsopn  23091  opncldf1  23113  opnneissb  23143  opnssneib  23144  opnneiss  23147  neitr  23209  restntr  23211  cnpnei  23293  imasnopn  23719  cnextcn  24096  utopreg  24282  ist0cld  33779  opnregcld  36296  ptrecube  37580  poimirlem29  37609  poimir  37613  seposep  48605  iscnrm3rlem7  48626
  Copyright terms: Public domain W3C validator