| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltopss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4889 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 3976 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantl 481 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 Topctop 22806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-uni 4860 |
| This theorem is referenced by: riinopn 22821 opncld 22946 ntrval2 22964 ntrss3 22973 cmclsopn 22975 opncldf1 22997 opnneissb 23027 opnssneib 23028 opnneiss 23031 neitr 23093 restntr 23095 cnpnei 23177 imasnopn 23603 cnextcn 23980 utopreg 24165 ist0cld 33841 opnregcld 36363 ptrecube 37659 poimirlem29 37688 poimir 37692 seposep 48956 iscnrm3rlem7 48976 |
| Copyright terms: Public domain | W3C validator |