| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltopss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4913 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 4000 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantl 481 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 Topctop 22831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 |
| This theorem is referenced by: riinopn 22846 opncld 22971 ntrval2 22989 ntrss3 22998 cmclsopn 23000 opncldf1 23022 opnneissb 23052 opnssneib 23053 opnneiss 23056 neitr 23118 restntr 23120 cnpnei 23202 imasnopn 23628 cnextcn 24005 utopreg 24191 ist0cld 33864 opnregcld 36348 ptrecube 37644 poimirlem29 37673 poimir 37677 seposep 48900 iscnrm3rlem7 48920 |
| Copyright terms: Public domain | W3C validator |