MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Structured version   Visualization version   GIF version

Theorem eltopss 22416
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 4941 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2sseqtrrdi 4033 . 2 (𝐴𝐽𝐴𝑋)
43adantl 482 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3948   cuni 4908  Topctop 22402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-uni 4909
This theorem is referenced by:  riinopn  22417  opncld  22544  ntrval2  22562  ntrss3  22571  cmclsopn  22573  opncldf1  22595  opnneissb  22625  opnssneib  22626  opnneiss  22629  neitr  22691  restntr  22693  cnpnei  22775  imasnopn  23201  cnextcn  23578  utopreg  23764  ist0cld  32882  opnregcld  35301  ptrecube  36574  poimirlem29  36603  poimir  36607  seposep  47636  iscnrm3rlem7  47657
  Copyright terms: Public domain W3C validator