| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltopss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4904 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 3991 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantl 481 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 Topctop 22787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: riinopn 22802 opncld 22927 ntrval2 22945 ntrss3 22954 cmclsopn 22956 opncldf1 22978 opnneissb 23008 opnssneib 23009 opnneiss 23012 neitr 23074 restntr 23076 cnpnei 23158 imasnopn 23584 cnextcn 23961 utopreg 24147 ist0cld 33830 opnregcld 36325 ptrecube 37621 poimirlem29 37650 poimir 37654 seposep 48918 iscnrm3rlem7 48938 |
| Copyright terms: Public domain | W3C validator |