![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltopss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4941 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | sseqtrrdi 4046 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
4 | 3 | adantl 481 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 Topctop 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-uni 4912 |
This theorem is referenced by: riinopn 22929 opncld 23056 ntrval2 23074 ntrss3 23083 cmclsopn 23085 opncldf1 23107 opnneissb 23137 opnssneib 23138 opnneiss 23141 neitr 23203 restntr 23205 cnpnei 23287 imasnopn 23713 cnextcn 24090 utopreg 24276 ist0cld 33793 opnregcld 36312 ptrecube 37606 poimirlem29 37635 poimir 37639 seposep 48721 iscnrm3rlem7 48742 |
Copyright terms: Public domain | W3C validator |