MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Structured version   Visualization version   GIF version

Theorem eltopss 22820
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 4889 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2sseqtrrdi 3976 . 2 (𝐴𝐽𝐴𝑋)
43adantl 481 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902   cuni 4859  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-uni 4860
This theorem is referenced by:  riinopn  22821  opncld  22946  ntrval2  22964  ntrss3  22973  cmclsopn  22975  opncldf1  22997  opnneissb  23027  opnssneib  23028  opnneiss  23031  neitr  23093  restntr  23095  cnpnei  23177  imasnopn  23603  cnextcn  23980  utopreg  24165  ist0cld  33841  opnregcld  36363  ptrecube  37659  poimirlem29  37688  poimir  37692  seposep  48956  iscnrm3rlem7  48976
  Copyright terms: Public domain W3C validator