MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopreg Structured version   Visualization version   GIF version

Theorem utopreg 23404
Description: All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Hypothesis
Ref Expression
utopreg.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopreg ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)

Proof of Theorem utopreg
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopreg.1 . . 3 𝐽 = (unifTop‘𝑈)
2 utoptop 23386 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
32adantr 481 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → (unifTop‘𝑈) ∈ Top)
41, 3eqeltrid 2843 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Top)
5 simp-4l 780 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎))
64ad2antrr 723 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝐽 ∈ Top)
8 simplr 766 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤𝑈)
9 simp-4l 780 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
10 simpr 485 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑤𝑈)
114ad3antrrr 727 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝐽 ∈ Top)
12 simpllr 773 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎𝐽)
13 eqid 2738 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1413eltopss 22056 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑎𝐽) → 𝑎 𝐽)
1511, 12, 14syl2anc 584 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎 𝐽)
16 utopbas 23387 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
171unieqi 4852 . . . . . . . . . . . . . 14 𝐽 = (unifTop‘𝑈)
1816, 17eqtr4di 2796 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
199, 18syl 17 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑋 = 𝐽)
2015, 19sseqtrrd 3962 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎𝑋)
21 simplr 766 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑥𝑎)
2220, 21sseldd 3922 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑥𝑋)
231utopsnnei 23401 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑥𝑋) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
249, 10, 22, 23syl3anc 1370 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
255, 8, 24syl2anc 584 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
26 neii2 22259 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})))
277, 25, 26syl2anc 584 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})))
28 simprl 768 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → {𝑥} ⊆ 𝑏)
29 vex 3436 . . . . . . . . . . . 12 𝑥 ∈ V
3029snss 4719 . . . . . . . . . . 11 (𝑥𝑏 ↔ {𝑥} ⊆ 𝑏)
3128, 30sylibr 233 . . . . . . . . . 10 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥𝑏)
327ad2antrr 723 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝐽 ∈ Top)
33 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
345, 33syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋))
3534ad2antrr 723 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑈 ∈ (UnifOn‘𝑋))
368ad2antrr 723 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑤𝑈)
37 simplr 766 . . . . . . . . . . . . . . . . . . 19 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎𝐽)
386, 37, 14syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 𝐽)
3933, 18syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑋 = 𝐽)
4038, 39sseqtrrd 3962 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎𝑋)
41 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑥𝑎)
4240, 41sseldd 3922 . . . . . . . . . . . . . . . 16 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑥𝑋)
4342ad6antr 733 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥𝑋)
44 ustimasn 23380 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑥𝑋) → (𝑤 “ {𝑥}) ⊆ 𝑋)
4535, 36, 43, 44syl3anc 1370 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝑋)
4635, 18syl 17 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑋 = 𝐽)
4745, 46sseqtrd 3961 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝐽)
48 simprr 770 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑏 ⊆ (𝑤 “ {𝑥}))
4913clsss 22205 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ⊆ 𝐽𝑏 ⊆ (𝑤 “ {𝑥})) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥})))
5032, 47, 48, 49syl3anc 1370 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥})))
51 ustssxp 23356 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
5234, 8, 51syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (𝑋 × 𝑋))
5334, 18syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑋 = 𝐽)
5453sqxpeqd 5621 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
5552, 54sseqtrd 3961 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ ( 𝐽 × 𝐽))
565, 38syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑎 𝐽)
57 simp-5r 783 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑥𝑎)
5856, 57sseldd 3922 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑥 𝐽)
5913, 13imasncls 22843 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝑤 ⊆ ( 𝐽 × 𝐽) ∧ 𝑥 𝐽)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}))
607, 7, 55, 58, 59syl22anc 836 . . . . . . . . . . . . . 14 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}))
61 simprl 768 . . . . . . . . . . . . . . . . 17 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 = 𝑤)
621utop3cls 23403 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ⊆ (𝑋 × 𝑋)) ∧ (𝑤𝑈𝑤 = 𝑤)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤𝑤)))
6334, 52, 8, 61, 62syl22anc 836 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤𝑤)))
64 simprr 770 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)
6563, 64sstrd 3931 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣)
66 imass1 6009 . . . . . . . . . . . . . . 15 (((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣 → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥}))
6765, 66syl 17 . . . . . . . . . . . . . 14 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥}))
6860, 67sstrd 3931 . . . . . . . . . . . . 13 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥}))
6968ad2antrr 723 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥}))
7050, 69sstrd 3931 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ (𝑣 “ {𝑥}))
71 simp-5r 783 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑎 = (𝑣 “ {𝑥}))
7270, 71sseqtrrd 3962 . . . . . . . . . 10 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ 𝑎)
7331, 72jca 512 . . . . . . . . 9 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
7473ex 413 . . . . . . . 8 (((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) → (({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})) → (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
7574reximdva 3203 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
7627, 75mpd 15 . . . . . 6 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
77 simp-5l 782 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑈 ∈ (UnifOn‘𝑋))
78 simplr 766 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑣𝑈)
79 ustex3sym 23369 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣))
8077, 78, 79syl2anc 584 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣))
8176, 80r19.29a 3218 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
82 opnneip 22270 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑎𝐽𝑥𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥}))
836, 37, 41, 82syl3anc 1370 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥}))
841utopsnneip 23400 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
8533, 42, 84syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
8683, 85eleqtrd 2841 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
87 eqid 2738 . . . . . . . 8 (𝑣𝑈 ↦ (𝑣 “ {𝑥})) = (𝑣𝑈 ↦ (𝑣 “ {𝑥}))
8887elrnmpt 5865 . . . . . . 7 (𝑎𝐽 → (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥})))
8937, 88syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥})))
9086, 89mpbid 231 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥}))
9181, 90r19.29a 3218 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
9291ralrimiva 3103 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) → ∀𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
9392ralrimiva 3103 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → ∀𝑎𝐽𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
94 isreg 22483 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑎𝐽𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
954, 93, 94sylanbrc 583 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  cima 5592  ccom 5593  cfv 6433  (class class class)co 7275  Topctop 22042  clsccl 22169  neicnei 22248  Hauscha 22459  Regcreg 22460   ×t ctx 22711  UnifOncust 23351  unifTopcutop 23382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-reg 22467  df-tx 22713  df-ust 23352  df-utop 23383
This theorem is referenced by:  uspreg  23426
  Copyright terms: Public domain W3C validator