| Step | Hyp | Ref
| Expression |
| 1 | | utopreg.1 |
. . 3
⊢ 𝐽 = (unifTop‘𝑈) |
| 2 | | utoptop 24243 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → (unifTop‘𝑈) ∈ Top) |
| 4 | 1, 3 | eqeltrid 2845 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Top) |
| 5 | | simp-4l 783 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎)) |
| 6 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝐽 ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝐽 ∈ Top) |
| 8 | | simplr 769 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ∈ 𝑈) |
| 9 | | simp-4l 783 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 10 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑤 ∈ 𝑈) |
| 11 | 4 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝐽 ∈ Top) |
| 12 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ∈ 𝐽) |
| 13 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 14 | 13 | eltopss 22913 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑎 ∈ 𝐽) → 𝑎 ⊆ ∪ 𝐽) |
| 15 | 11, 12, 14 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ⊆ ∪ 𝐽) |
| 16 | | utopbas 24244 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪
(unifTop‘𝑈)) |
| 17 | 1 | unieqi 4919 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ (unifTop‘𝑈) |
| 18 | 16, 17 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 19 | 9, 18 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑋 = ∪ 𝐽) |
| 20 | 15, 19 | sseqtrrd 4021 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ⊆ 𝑋) |
| 21 | | simplr 769 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑥 ∈ 𝑎) |
| 22 | 20, 21 | sseldd 3984 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑥 ∈ 𝑋) |
| 23 | 1 | utopsnnei 24258 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑋) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
| 24 | 9, 10, 22, 23 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
| 25 | 5, 8, 24 | syl2anc 584 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
| 26 | | neii2 23116 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) |
| 27 | 7, 25, 26 | syl2anc 584 |
. . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) |
| 28 | | simprl 771 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → {𝑥} ⊆ 𝑏) |
| 29 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 30 | 29 | snss 4785 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑏 ↔ {𝑥} ⊆ 𝑏) |
| 31 | 28, 30 | sylibr 234 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥 ∈ 𝑏) |
| 32 | 7 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝐽 ∈ Top) |
| 33 | | simplll 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 34 | 5, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 36 | 8 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑤 ∈ 𝑈) |
| 37 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ 𝐽) |
| 38 | 6, 37, 14 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ⊆ ∪ 𝐽) |
| 39 | 33, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑋 = ∪ 𝐽) |
| 40 | 38, 39 | sseqtrrd 4021 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ⊆ 𝑋) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑎) |
| 42 | 40, 41 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑋) |
| 43 | 42 | ad6antr 736 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥 ∈ 𝑋) |
| 44 | | ustimasn 24237 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑋) → (𝑤 “ {𝑥}) ⊆ 𝑋) |
| 45 | 35, 36, 43, 44 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝑋) |
| 46 | 35, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑋 = ∪ 𝐽) |
| 47 | 45, 46 | sseqtrd 4020 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ ∪ 𝐽) |
| 48 | | simprr 773 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑏 ⊆ (𝑤 “ {𝑥})) |
| 49 | 13 | clsss 23062 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ⊆ ∪ 𝐽 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥}))) |
| 50 | 32, 47, 48, 49 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥}))) |
| 51 | | ustssxp 24213 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑋 × 𝑋)) |
| 52 | 34, 8, 51 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (𝑋 × 𝑋)) |
| 53 | 34, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑋 = ∪ 𝐽) |
| 54 | 53 | sqxpeqd 5717 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑋 × 𝑋) = (∪ 𝐽 × ∪ 𝐽)) |
| 55 | 52, 54 | sseqtrd 4020 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (∪ 𝐽 × ∪ 𝐽)) |
| 56 | 5, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑎 ⊆ ∪ 𝐽) |
| 57 | | simp-5r 786 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑥 ∈ 𝑎) |
| 58 | 56, 57 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑥 ∈ ∪ 𝐽) |
| 59 | 13, 13 | imasncls 23700 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝑤 ⊆ (∪ 𝐽
× ∪ 𝐽) ∧ 𝑥 ∈ ∪ 𝐽)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥})) |
| 60 | 7, 7, 55, 58, 59 | syl22anc 839 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥})) |
| 61 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ◡𝑤 = 𝑤) |
| 62 | 1 | utop3cls 24260 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ⊆ (𝑋 × 𝑋)) ∧ (𝑤 ∈ 𝑈 ∧ ◡𝑤 = 𝑤)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤 ∘ 𝑤))) |
| 63 | 34, 52, 8, 61, 62 | syl22anc 839 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤 ∘ 𝑤))) |
| 64 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣) |
| 65 | 63, 64 | sstrd 3994 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣) |
| 66 | | imass1 6119 |
. . . . . . . . . . . . . . 15
⊢
(((cls‘(𝐽
×t 𝐽))‘𝑤) ⊆ 𝑣 → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥})) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥})) |
| 68 | 60, 67 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥})) |
| 69 | 68 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥})) |
| 70 | 50, 69 | sstrd 3994 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ (𝑣 “ {𝑥})) |
| 71 | | simp-5r 786 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑎 = (𝑣 “ {𝑥})) |
| 72 | 70, 71 | sseqtrrd 4021 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ 𝑎) |
| 73 | 31, 72 | jca 511 |
. . . . . . . . 9
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 74 | 73 | ex 412 |
. . . . . . . 8
⊢
(((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) → (({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
| 75 | 74 | reximdva 3168 |
. . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
| 76 | 27, 75 | mpd 15 |
. . . . . 6
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 77 | | simp-5l 785 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 78 | | simplr 769 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑣 ∈ 𝑈) |
| 79 | | ustex3sym 24226 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) |
| 80 | 77, 78, 79 | syl2anc 584 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) |
| 81 | 76, 80 | r19.29a 3162 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 82 | | opnneip 23127 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥})) |
| 83 | 6, 37, 41, 82 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥})) |
| 84 | 1 | utopsnneip 24257 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑋) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
| 85 | 33, 42, 84 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
| 86 | 83, 85 | eleqtrd 2843 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
| 87 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) |
| 88 | 87 | elrnmpt 5969 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐽 → (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥}))) |
| 89 | 37, 88 | syl 17 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥}))) |
| 90 | 86, 89 | mpbid 232 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥})) |
| 91 | 81, 90 | r19.29a 3162 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 92 | 91 | ralrimiva 3146 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) → ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 93 | 92 | ralrimiva 3146 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → ∀𝑎 ∈ 𝐽 ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
| 94 | | isreg 23340 |
. 2
⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝐽 ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
| 95 | 4, 93, 94 | sylanbrc 583 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |