Step | Hyp | Ref
| Expression |
1 | | utopreg.1 |
. . 3
⊢ 𝐽 = (unifTop‘𝑈) |
2 | | utoptop 23294 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → (unifTop‘𝑈) ∈ Top) |
4 | 1, 3 | eqeltrid 2843 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Top) |
5 | | simp-4l 779 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎)) |
6 | 4 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝐽 ∈ Top) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝐽 ∈ Top) |
8 | | simplr 765 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ∈ 𝑈) |
9 | | simp-4l 779 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
10 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑤 ∈ 𝑈) |
11 | 4 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝐽 ∈ Top) |
12 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ∈ 𝐽) |
13 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
14 | 13 | eltopss 21964 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑎 ∈ 𝐽) → 𝑎 ⊆ ∪ 𝐽) |
15 | 11, 12, 14 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ⊆ ∪ 𝐽) |
16 | | utopbas 23295 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪
(unifTop‘𝑈)) |
17 | 1 | unieqi 4849 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ (unifTop‘𝑈) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ 𝐽) |
19 | 9, 18 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑋 = ∪ 𝐽) |
20 | 15, 19 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑎 ⊆ 𝑋) |
21 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑥 ∈ 𝑎) |
22 | 20, 21 | sseldd 3918 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → 𝑥 ∈ 𝑋) |
23 | 1 | utopsnnei 23309 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑋) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
24 | 9, 10, 22, 23 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
25 | 5, 8, 24 | syl2anc 583 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) |
26 | | neii2 22167 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) |
27 | 7, 25, 26 | syl2anc 583 |
. . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) |
28 | | simprl 767 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → {𝑥} ⊆ 𝑏) |
29 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
30 | 29 | snss 4716 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑏 ↔ {𝑥} ⊆ 𝑏) |
31 | 28, 30 | sylibr 233 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥 ∈ 𝑏) |
32 | 7 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝐽 ∈ Top) |
33 | | simplll 771 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋)) |
34 | 5, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋)) |
35 | 34 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑈 ∈ (UnifOn‘𝑋)) |
36 | 8 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑤 ∈ 𝑈) |
37 | | simplr 765 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ 𝐽) |
38 | 6, 37, 14 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ⊆ ∪ 𝐽) |
39 | 33, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑋 = ∪ 𝐽) |
40 | 38, 39 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ⊆ 𝑋) |
41 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑎) |
42 | 40, 41 | sseldd 3918 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑋) |
43 | 42 | ad6antr 732 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥 ∈ 𝑋) |
44 | | ustimasn 23288 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑋) → (𝑤 “ {𝑥}) ⊆ 𝑋) |
45 | 35, 36, 43, 44 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝑋) |
46 | 35, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑋 = ∪ 𝐽) |
47 | 45, 46 | sseqtrd 3957 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ ∪ 𝐽) |
48 | | simprr 769 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑏 ⊆ (𝑤 “ {𝑥})) |
49 | 13 | clsss 22113 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ⊆ ∪ 𝐽 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥}))) |
50 | 32, 47, 48, 49 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥}))) |
51 | | ustssxp 23264 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑋 × 𝑋)) |
52 | 34, 8, 51 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (𝑋 × 𝑋)) |
53 | 34, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑋 = ∪ 𝐽) |
54 | 53 | sqxpeqd 5612 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑋 × 𝑋) = (∪ 𝐽 × ∪ 𝐽)) |
55 | 52, 54 | sseqtrd 3957 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (∪ 𝐽 × ∪ 𝐽)) |
56 | 5, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑎 ⊆ ∪ 𝐽) |
57 | | simp-5r 782 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑥 ∈ 𝑎) |
58 | 56, 57 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → 𝑥 ∈ ∪ 𝐽) |
59 | 13, 13 | imasncls 22751 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝑤 ⊆ (∪ 𝐽
× ∪ 𝐽) ∧ 𝑥 ∈ ∪ 𝐽)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥})) |
60 | 7, 7, 55, 58, 59 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥})) |
61 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ◡𝑤 = 𝑤) |
62 | 1 | utop3cls 23311 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ⊆ (𝑋 × 𝑋)) ∧ (𝑤 ∈ 𝑈 ∧ ◡𝑤 = 𝑤)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤 ∘ 𝑤))) |
63 | 34, 52, 8, 61, 62 | syl22anc 835 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤 ∘ 𝑤))) |
64 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣) |
65 | 63, 64 | sstrd 3927 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣) |
66 | | imass1 5998 |
. . . . . . . . . . . . . . 15
⊢
(((cls‘(𝐽
×t 𝐽))‘𝑤) ⊆ 𝑣 → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥})) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥})) |
68 | 60, 67 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥})) |
69 | 68 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥})) |
70 | 50, 69 | sstrd 3927 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ (𝑣 “ {𝑥})) |
71 | | simp-5r 782 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑎 = (𝑣 “ {𝑥})) |
72 | 70, 71 | sseqtrrd 3958 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ 𝑎) |
73 | 31, 72 | jca 511 |
. . . . . . . . 9
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) ∧ ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
74 | 73 | ex 412 |
. . . . . . . 8
⊢
(((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) ∧ 𝑏 ∈ 𝐽) → (({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
75 | 74 | reximdva 3202 |
. . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → (∃𝑏 ∈ 𝐽 ({𝑥} ⊆ 𝑏 ∧ 𝑏 ⊆ (𝑤 “ {𝑥})) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
76 | 27, 75 | mpd 15 |
. . . . . 6
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
77 | | simp-5l 781 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑈 ∈ (UnifOn‘𝑋)) |
78 | | simplr 765 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑣 ∈ 𝑈) |
79 | | ustex3sym 23277 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) |
80 | 77, 78, 79 | syl2anc 583 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑣)) |
81 | 76, 80 | r19.29a 3217 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
82 | | opnneip 22178 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑎 ∈ 𝐽 ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥})) |
83 | 6, 37, 41, 82 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥})) |
84 | 1 | utopsnneip 23308 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑋) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
85 | 33, 42, 84 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
86 | 83, 85 | eleqtrd 2841 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → 𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥}))) |
87 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) |
88 | 87 | elrnmpt 5854 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐽 → (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥}))) |
89 | 37, 88 | syl 17 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥}))) |
90 | 86, 89 | mpbid 231 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑥})) |
91 | 81, 90 | r19.29a 3217 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) ∧ 𝑥 ∈ 𝑎) → ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
92 | 91 | ralrimiva 3107 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎 ∈ 𝐽) → ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
93 | 92 | ralrimiva 3107 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → ∀𝑎 ∈ 𝐽 ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)) |
94 | | isreg 22391 |
. 2
⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝐽 ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ 𝐽 (𝑥 ∈ 𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))) |
95 | 4, 93, 94 | sylanbrc 582 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |