Proof of Theorem opnregcld
| Step | Hyp | Ref
| Expression |
| 1 | | opnregcld.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | ntropn 23022 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
| 3 | | eqcom 2741 |
. . . . 5
⊢
(((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
| 4 | 3 | biimpi 216 |
. . . 4
⊢
(((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
| 5 | | fveq2 6887 |
. . . . 5
⊢ (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
| 6 | 5 | rspceeqv 3629 |
. . . 4
⊢
((((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜)) |
| 7 | 2, 4, 6 | syl2an 596 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜)) |
| 8 | 7 | ex 412 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜))) |
| 9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝐽 ∈ Top) |
| 10 | 1 | eltopss 22880 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
| 11 | 1 | clsss3 23032 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋) |
| 12 | 10, 11 | syldan 591 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋) |
| 13 | 1 | ntrss2 23030 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) |
| 14 | 12, 13 | syldan 591 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) |
| 15 | 1 | clsss 23027 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜))) |
| 16 | 9, 12, 14, 15 | syl3anc 1372 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜))) |
| 17 | 1 | clsidm 23040 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜)) |
| 18 | 10, 17 | syldan 591 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜)) |
| 19 | 16, 18 | sseqtrd 4002 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜)) |
| 20 | 1 | ntrss3 23033 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋) |
| 21 | 12, 20 | syldan 591 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋) |
| 22 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ∈ 𝐽) |
| 23 | 1 | sscls 23029 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜)) |
| 24 | 10, 23 | syldan 591 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜)) |
| 25 | 1 | ssntr 23031 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) |
| 26 | 9, 12, 22, 24, 25 | syl22anc 838 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) |
| 27 | 1 | clsss 23027 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋 ∧ 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
| 28 | 9, 21, 26, 27 | syl3anc 1372 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
| 29 | 19, 28 | eqssd 3983 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)) |
| 30 | 29 | adantlr 715 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)) |
| 31 | | 2fveq3 6892 |
. . . . 5
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
| 32 | | id 22 |
. . . . 5
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜)) |
| 33 | 31, 32 | eqeq12d 2750 |
. . . 4
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))) |
| 34 | 30, 33 | syl5ibrcom 247 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴)) |
| 35 | 34 | rexlimdva 3142 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴)) |
| 36 | 8, 35 | impbid 212 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜))) |