Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnregcld Structured version   Visualization version   GIF version

Theorem opnregcld 36272
Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
opnregcld ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Distinct variable groups:   𝐴,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem opnregcld
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21ntropn 23022 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
3 eqcom 2741 . . . . 5 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
43biimpi 216 . . . 4 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
5 fveq2 6887 . . . . 5 (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
65rspceeqv 3629 . . . 4 ((((int‘𝐽)‘𝐴) ∈ 𝐽𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
72, 4, 6syl2an 596 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
87ex 412 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
9 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝐽 ∈ Top)
101eltopss 22880 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
111clsss3 23032 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
1210, 11syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
131ntrss2 23030 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
1412, 13syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
151clsss 23027 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
169, 12, 14, 15syl3anc 1372 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
171clsidm 23040 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1810, 17syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1916, 18sseqtrd 4002 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜))
201ntrss3 23033 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
2112, 20syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
22 simpr 484 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝐽)
231sscls 23029 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
2410, 23syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
251ssntr 23031 . . . . . . . 8 (((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
269, 12, 22, 24, 25syl22anc 838 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
271clsss 23027 . . . . . . 7 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
289, 21, 26, 27syl3anc 1372 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
2919, 28eqssd 3983 . . . . 5 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
3029adantlr 715 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
31 2fveq3 6892 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
32 id 22 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜))
3331, 32eqeq12d 2750 . . . 4 (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)))
3430, 33syl5ibrcom 247 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
3534rexlimdva 3142 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
368, 35impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  wss 3933   cuni 4889  cfv 6542  Topctop 22866  intcnt 22990  clsccl 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22867  df-cld 22992  df-ntr 22993  df-cls 22994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator