Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnregcld Structured version   Visualization version   GIF version

Theorem opnregcld 36353
Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
opnregcld ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Distinct variable groups:   𝐴,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem opnregcld
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21ntropn 22992 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
3 eqcom 2743 . . . . 5 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
43biimpi 216 . . . 4 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
5 fveq2 6881 . . . . 5 (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
65rspceeqv 3629 . . . 4 ((((int‘𝐽)‘𝐴) ∈ 𝐽𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
72, 4, 6syl2an 596 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
87ex 412 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
9 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝐽 ∈ Top)
101eltopss 22850 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
111clsss3 23002 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
1210, 11syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
131ntrss2 23000 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
1412, 13syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
151clsss 22997 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
169, 12, 14, 15syl3anc 1373 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
171clsidm 23010 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1810, 17syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1916, 18sseqtrd 4000 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜))
201ntrss3 23003 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
2112, 20syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
22 simpr 484 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝐽)
231sscls 22999 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
2410, 23syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
251ssntr 23001 . . . . . . . 8 (((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
269, 12, 22, 24, 25syl22anc 838 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
271clsss 22997 . . . . . . 7 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
289, 21, 26, 27syl3anc 1373 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
2919, 28eqssd 3981 . . . . 5 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
3029adantlr 715 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
31 2fveq3 6886 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
32 id 22 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜))
3331, 32eqeq12d 2752 . . . 4 (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)))
3430, 33syl5ibrcom 247 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
3534rexlimdva 3142 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
368, 35impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931   cuni 4888  cfv 6536  Topctop 22836  intcnt 22960  clsccl 22961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22837  df-cld 22962  df-ntr 22963  df-cls 22964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator