Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnregcld Structured version   Visualization version   GIF version

Theorem opnregcld 34528
Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
opnregcld ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Distinct variable groups:   𝐴,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem opnregcld
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21ntropn 22209 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
3 eqcom 2746 . . . . 5 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
43biimpi 215 . . . 4 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
5 fveq2 6783 . . . . 5 (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
65rspceeqv 3576 . . . 4 ((((int‘𝐽)‘𝐴) ∈ 𝐽𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
72, 4, 6syl2an 596 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
87ex 413 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
9 simpl 483 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝐽 ∈ Top)
101eltopss 22065 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
111clsss3 22219 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
1210, 11syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
131ntrss2 22217 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
1412, 13syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
151clsss 22214 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
169, 12, 14, 15syl3anc 1370 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
171clsidm 22227 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1810, 17syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1916, 18sseqtrd 3962 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜))
201ntrss3 22220 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
2112, 20syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
22 simpr 485 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝐽)
231sscls 22216 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
2410, 23syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
251ssntr 22218 . . . . . . . 8 (((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
269, 12, 22, 24, 25syl22anc 836 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
271clsss 22214 . . . . . . 7 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
289, 21, 26, 27syl3anc 1370 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
2919, 28eqssd 3939 . . . . 5 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
3029adantlr 712 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
31 2fveq3 6788 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
32 id 22 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜))
3331, 32eqeq12d 2755 . . . 4 (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)))
3430, 33syl5ibrcom 246 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
3534rexlimdva 3214 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
368, 35impbid 211 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wrex 3066  wss 3888   cuni 4840  cfv 6437  Topctop 22051  intcnt 22177  clsccl 22178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-top 22052  df-cld 22179  df-ntr 22180  df-cls 22181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator