Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnregcld Structured version   Visualization version   GIF version

Theorem opnregcld 36318
Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
opnregcld ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Distinct variable groups:   𝐴,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem opnregcld
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21ntropn 22936 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
3 eqcom 2736 . . . . 5 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
43biimpi 216 . . . 4 (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
5 fveq2 6858 . . . . 5 (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))
65rspceeqv 3611 . . . 4 ((((int‘𝐽)‘𝐴) ∈ 𝐽𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
72, 4, 6syl2an 596 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜))
87ex 412 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
9 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝐽 ∈ Top)
101eltopss 22794 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
111clsss3 22946 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
1210, 11syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋)
131ntrss2 22944 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
1412, 13syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜))
151clsss 22941 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
169, 12, 14, 15syl3anc 1373 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)))
171clsidm 22954 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1810, 17syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜))
1916, 18sseqtrd 3983 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜))
201ntrss3 22947 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
2112, 20syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋)
22 simpr 484 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝐽)
231sscls 22943 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑜𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
2410, 23syldan 591 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜))
251ssntr 22945 . . . . . . . 8 (((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
269, 12, 22, 24, 25syl22anc 838 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)))
271clsss 22941 . . . . . . 7 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
289, 21, 26, 27syl3anc 1373 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
2919, 28eqssd 3964 . . . . 5 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
3029adantlr 715 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))
31 2fveq3 6863 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))))
32 id 22 . . . . 5 (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜))
3331, 32eqeq12d 2745 . . . 4 (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)))
3430, 33syl5ibrcom 247 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
3534rexlimdva 3134 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴))
368, 35impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914   cuni 4871  cfv 6511  Topctop 22780  intcnt 22904  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator