MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval2 Structured version   Visualization version   GIF version

Theorem ntrval2 23075
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))

Proof of Theorem ntrval2
StepHypRef Expression
1 difss 4146 . . . . . 6 (𝑋𝑆) ⊆ 𝑋
2 clscld.1 . . . . . . 7 𝑋 = 𝐽
32clsval2 23074 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
41, 3mpan2 691 . . . . 5 (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
54adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
6 dfss4 4275 . . . . . . . 8 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76biimpi 216 . . . . . . 7 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
87fveq2d 6911 . . . . . 6 (𝑆𝑋 → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆))) = ((int‘𝐽)‘𝑆))
98adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆))) = ((int‘𝐽)‘𝑆))
109difeq2d 4136 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))) = (𝑋 ∖ ((int‘𝐽)‘𝑆)))
115, 10eqtrd 2775 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘𝑆)))
1211difeq2d 4136 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))))
132ntropn 23073 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
142eltopss 22929 . . . 4 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
1513, 14syldan 591 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
16 dfss4 4275 . . 3 (((int‘𝐽)‘𝑆) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆))
1715, 16sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆))
1812, 17eqtr2d 2776 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  wss 3963   cuni 4912  cfv 6563  Topctop 22915  intcnt 23041  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-top 22916  df-cld 23043  df-ntr 23044  df-cls 23045
This theorem is referenced by:  ntrdif  23076  ntrss  23079  kur14lem2  35192  dssmapntrcls  44118
  Copyright terms: Public domain W3C validator