MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval2 Structured version   Visualization version   GIF version

Theorem ntrval2 22936
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))

Proof of Theorem ntrval2
StepHypRef Expression
1 difss 4087 . . . . . 6 (𝑋𝑆) ⊆ 𝑋
2 clscld.1 . . . . . . 7 𝑋 = 𝐽
32clsval2 22935 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
41, 3mpan2 691 . . . . 5 (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
54adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))))
6 dfss4 4220 . . . . . . . 8 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76biimpi 216 . . . . . . 7 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
87fveq2d 6826 . . . . . 6 (𝑆𝑋 → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆))) = ((int‘𝐽)‘𝑆))
98adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆))) = ((int‘𝐽)‘𝑆))
109difeq2d 4077 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝑆)))) = (𝑋 ∖ ((int‘𝐽)‘𝑆)))
115, 10eqtrd 2764 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑋𝑆)) = (𝑋 ∖ ((int‘𝐽)‘𝑆)))
1211difeq2d 4077 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))))
132ntropn 22934 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
142eltopss 22792 . . . 4 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
1513, 14syldan 591 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
16 dfss4 4220 . . 3 (((int‘𝐽)‘𝑆) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆))
1715, 16sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆))
1812, 17eqtr2d 2765 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  wss 3903   cuni 4858  cfv 6482  Topctop 22778  intcnt 22902  clsccl 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-top 22779  df-cld 22904  df-ntr 22905  df-cls 22906
This theorem is referenced by:  ntrdif  22937  ntrss  22940  kur14lem2  35190  dssmapntrcls  44111
  Copyright terms: Public domain W3C validator