Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrval2 | Structured version Visualization version GIF version |
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrval2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4020 | . . . . . 6 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
2 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval2 21794 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
4 | 1, 3 | mpan2 691 | . . . . 5 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
5 | 4 | adantr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
6 | dfss4 4147 | . . . . . . . 8 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
7 | 6 | biimpi 219 | . . . . . . 7 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
8 | 7 | fveq2d 6672 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
9 | 8 | adantl 485 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
10 | 9 | difeq2d 4011 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆)))) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
11 | 5, 10 | eqtrd 2773 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
12 | 11 | difeq2d 4011 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆))) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆)))) |
13 | 2 | ntropn 21793 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
14 | 2 | eltopss 21651 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
15 | 13, 14 | syldan 594 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
16 | dfss4 4147 | . . 3 ⊢ (((int‘𝐽)‘𝑆) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) | |
17 | 15, 16 | sylib 221 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) |
18 | 12, 17 | eqtr2d 2774 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∖ cdif 3838 ⊆ wss 3841 ∪ cuni 4793 ‘cfv 6333 Topctop 21637 intcnt 21761 clsccl 21762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-top 21638 df-cld 21763 df-ntr 21764 df-cls 21765 |
This theorem is referenced by: ntrdif 21796 ntrss 21799 kur14lem2 32732 dssmapntrcls 41268 |
Copyright terms: Public domain | W3C validator |