![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrval2 | Structured version Visualization version GIF version |
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrval2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3960 | . . . . . 6 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
2 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval2 21273 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
4 | 1, 3 | mpan2 681 | . . . . 5 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
5 | 4 | adantr 474 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
6 | dfss4 4085 | . . . . . . . 8 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
7 | 6 | biimpi 208 | . . . . . . 7 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
8 | 7 | fveq2d 6452 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
9 | 8 | adantl 475 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
10 | 9 | difeq2d 3951 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆)))) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
11 | 5, 10 | eqtrd 2814 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
12 | 11 | difeq2d 3951 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆))) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆)))) |
13 | 2 | ntropn 21272 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
14 | 2 | eltopss 21130 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
15 | 13, 14 | syldan 585 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
16 | dfss4 4085 | . . 3 ⊢ (((int‘𝐽)‘𝑆) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) | |
17 | 15, 16 | sylib 210 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) |
18 | 12, 17 | eqtr2d 2815 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ⊆ wss 3792 ∪ cuni 4673 ‘cfv 6137 Topctop 21116 intcnt 21240 clsccl 21241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-top 21117 df-cld 21242 df-ntr 21243 df-cls 21244 |
This theorem is referenced by: ntrdif 21275 ntrss 21278 kur14lem2 31796 dssmapntrcls 39396 |
Copyright terms: Public domain | W3C validator |