| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrval2 | Structured version Visualization version GIF version | ||
| Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrval2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4087 | . . . . . 6 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 2 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval2 22935 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
| 4 | 1, 3 | mpan2 691 | . . . . 5 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))))) |
| 6 | dfss4 4220 | . . . . . . . 8 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
| 7 | 6 | biimpi 216 | . . . . . . 7 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
| 8 | 7 | fveq2d 6826 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆))) = ((int‘𝐽)‘𝑆)) |
| 10 | 9 | difeq2d 4077 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝑆)))) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
| 11 | 5, 10 | eqtrd 2764 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) = (𝑋 ∖ ((int‘𝐽)‘𝑆))) |
| 12 | 11 | difeq2d 4077 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆))) = (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆)))) |
| 13 | 2 | ntropn 22934 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| 14 | 2 | eltopss 22792 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
| 15 | 13, 14 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
| 16 | dfss4 4220 | . . 3 ⊢ (((int‘𝐽)‘𝑆) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((int‘𝐽)‘𝑆))) = ((int‘𝐽)‘𝑆)) |
| 18 | 12, 17 | eqtr2d 2765 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 intcnt 22902 clsccl 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-top 22779 df-cld 22904 df-ntr 22905 df-cls 22906 |
| This theorem is referenced by: ntrdif 22937 ntrss 22940 kur14lem2 35190 dssmapntrcls 44111 |
| Copyright terms: Public domain | W3C validator |