Step | Hyp | Ref
| Expression |
1 | | difss 4131 |
. . . . . 6
β’ (π β π) β π |
2 | | clscld.1 |
. . . . . . 7
β’ π = βͺ
π½ |
3 | 2 | clsval2 22875 |
. . . . . 6
β’ ((π½ β Top β§ (π β π) β π) β ((clsβπ½)β(π β π)) = (π β ((intβπ½)β(π β (π β π))))) |
4 | 1, 3 | mpan2 688 |
. . . . 5
β’ (π½ β Top β
((clsβπ½)β(π β π)) = (π β ((intβπ½)β(π β (π β π))))) |
5 | 4 | adantr 480 |
. . . 4
β’ ((π½ β Top β§ π β π) β ((clsβπ½)β(π β π)) = (π β ((intβπ½)β(π β (π β π))))) |
6 | | dfss4 4258 |
. . . . . . . 8
β’ (π β π β (π β (π β π)) = π) |
7 | 6 | biimpi 215 |
. . . . . . 7
β’ (π β π β (π β (π β π)) = π) |
8 | 7 | fveq2d 6895 |
. . . . . 6
β’ (π β π β ((intβπ½)β(π β (π β π))) = ((intβπ½)βπ)) |
9 | 8 | adantl 481 |
. . . . 5
β’ ((π½ β Top β§ π β π) β ((intβπ½)β(π β (π β π))) = ((intβπ½)βπ)) |
10 | 9 | difeq2d 4122 |
. . . 4
β’ ((π½ β Top β§ π β π) β (π β ((intβπ½)β(π β (π β π)))) = (π β ((intβπ½)βπ))) |
11 | 5, 10 | eqtrd 2771 |
. . 3
β’ ((π½ β Top β§ π β π) β ((clsβπ½)β(π β π)) = (π β ((intβπ½)βπ))) |
12 | 11 | difeq2d 4122 |
. 2
β’ ((π½ β Top β§ π β π) β (π β ((clsβπ½)β(π β π))) = (π β (π β ((intβπ½)βπ)))) |
13 | 2 | ntropn 22874 |
. . . 4
β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) β π½) |
14 | 2 | eltopss 22730 |
. . . 4
β’ ((π½ β Top β§
((intβπ½)βπ) β π½) β ((intβπ½)βπ) β π) |
15 | 13, 14 | syldan 590 |
. . 3
β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) β π) |
16 | | dfss4 4258 |
. . 3
β’
(((intβπ½)βπ) β π β (π β (π β ((intβπ½)βπ))) = ((intβπ½)βπ)) |
17 | 15, 16 | sylib 217 |
. 2
β’ ((π½ β Top β§ π β π) β (π β (π β ((intβπ½)βπ))) = ((intβπ½)βπ)) |
18 | 12, 17 | eqtr2d 2772 |
1
β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) = (π β ((clsβπ½)β(π β π)))) |