![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncldf1 | Structured version Visualization version GIF version |
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf1 | ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldf.2 | . 2 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
2 | opncldf.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | opncld 23062 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → (𝑋 ∖ 𝑢) ∈ (Clsd‘𝐽)) |
4 | 2 | cldopn 23060 | . . 3 ⊢ (𝑥 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
6 | 2 | cldss 23058 | . . . . . . 7 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋) |
7 | 6 | ad2antll 728 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 ⊆ 𝑋) |
8 | dfss4 4288 | . . . . . 6 ⊢ (𝑥 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) |
10 | 9 | eqcomd 2746 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥))) |
11 | difeq2 4143 | . . . . 5 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑋 ∖ 𝑢) = (𝑋 ∖ (𝑋 ∖ 𝑥))) | |
12 | 11 | eqeq2d 2751 | . . . 4 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑥 = (𝑋 ∖ 𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥)))) |
13 | 10, 12 | syl5ibrcom 247 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) → 𝑥 = (𝑋 ∖ 𝑢))) |
14 | 2 | eltopss 22934 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
15 | 14 | adantrr 716 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 ⊆ 𝑋) |
16 | dfss4 4288 | . . . . . 6 ⊢ (𝑢 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) | |
17 | 15, 16 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) |
18 | 17 | eqcomd 2746 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢))) |
19 | difeq2 4143 | . . . . 5 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑢))) | |
20 | 19 | eqeq2d 2751 | . . . 4 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢)))) |
21 | 18, 20 | syl5ibrcom 247 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋 ∖ 𝑢) → 𝑢 = (𝑋 ∖ 𝑥))) |
22 | 13, 21 | impbid 212 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑥 = (𝑋 ∖ 𝑢))) |
23 | 1, 3, 5, 22 | f1ocnv2d 7703 | 1 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 –1-1-onto→wf1o 6572 ‘cfv 6573 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-cld 23048 |
This theorem is referenced by: opncldf3 23115 cmpfi 23437 |
Copyright terms: Public domain | W3C validator |