Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opncldf1 | Structured version Visualization version GIF version |
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf1 | ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldf.2 | . 2 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
2 | opncldf.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | opncld 21930 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → (𝑋 ∖ 𝑢) ∈ (Clsd‘𝐽)) |
4 | 2 | cldopn 21928 | . . 3 ⊢ (𝑥 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
5 | 4 | adantl 485 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
6 | 2 | cldss 21926 | . . . . . . 7 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋) |
7 | 6 | ad2antll 729 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 ⊆ 𝑋) |
8 | dfss4 4173 | . . . . . 6 ⊢ (𝑥 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) | |
9 | 7, 8 | sylib 221 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) |
10 | 9 | eqcomd 2743 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥))) |
11 | difeq2 4031 | . . . . 5 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑋 ∖ 𝑢) = (𝑋 ∖ (𝑋 ∖ 𝑥))) | |
12 | 11 | eqeq2d 2748 | . . . 4 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑥 = (𝑋 ∖ 𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥)))) |
13 | 10, 12 | syl5ibrcom 250 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) → 𝑥 = (𝑋 ∖ 𝑢))) |
14 | 2 | eltopss 21804 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
15 | 14 | adantrr 717 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 ⊆ 𝑋) |
16 | dfss4 4173 | . . . . . 6 ⊢ (𝑢 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) | |
17 | 15, 16 | sylib 221 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) |
18 | 17 | eqcomd 2743 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢))) |
19 | difeq2 4031 | . . . . 5 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑢))) | |
20 | 19 | eqeq2d 2748 | . . . 4 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢)))) |
21 | 18, 20 | syl5ibrcom 250 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋 ∖ 𝑢) → 𝑢 = (𝑋 ∖ 𝑥))) |
22 | 13, 21 | impbid 215 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑥 = (𝑋 ∖ 𝑢))) |
23 | 1, 3, 5, 22 | f1ocnv2d 7458 | 1 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ⊆ wss 3866 ∪ cuni 4819 ↦ cmpt 5135 ◡ccnv 5550 –1-1-onto→wf1o 6379 ‘cfv 6380 Topctop 21790 Clsdccld 21913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-top 21791 df-cld 21916 |
This theorem is referenced by: opncldf3 21983 cmpfi 22305 |
Copyright terms: Public domain | W3C validator |