![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncldf1 | Structured version Visualization version GIF version |
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf1 | ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldf.2 | . 2 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
2 | opncldf.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | opncld 22282 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → (𝑋 ∖ 𝑢) ∈ (Clsd‘𝐽)) |
4 | 2 | cldopn 22280 | . . 3 ⊢ (𝑥 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
6 | 2 | cldss 22278 | . . . . . . 7 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋) |
7 | 6 | ad2antll 726 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 ⊆ 𝑋) |
8 | dfss4 4204 | . . . . . 6 ⊢ (𝑥 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) |
10 | 9 | eqcomd 2742 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥))) |
11 | difeq2 4062 | . . . . 5 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑋 ∖ 𝑢) = (𝑋 ∖ (𝑋 ∖ 𝑥))) | |
12 | 11 | eqeq2d 2747 | . . . 4 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑥 = (𝑋 ∖ 𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥)))) |
13 | 10, 12 | syl5ibrcom 246 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) → 𝑥 = (𝑋 ∖ 𝑢))) |
14 | 2 | eltopss 22154 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
15 | 14 | adantrr 714 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 ⊆ 𝑋) |
16 | dfss4 4204 | . . . . . 6 ⊢ (𝑢 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) |
18 | 17 | eqcomd 2742 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢))) |
19 | difeq2 4062 | . . . . 5 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑢))) | |
20 | 19 | eqeq2d 2747 | . . . 4 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢)))) |
21 | 18, 20 | syl5ibrcom 246 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋 ∖ 𝑢) → 𝑢 = (𝑋 ∖ 𝑥))) |
22 | 13, 21 | impbid 211 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑥 = (𝑋 ∖ 𝑢))) |
23 | 1, 3, 5, 22 | f1ocnv2d 7576 | 1 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4851 ↦ cmpt 5172 ◡ccnv 5613 –1-1-onto→wf1o 6472 ‘cfv 6473 Topctop 22140 Clsdccld 22265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-top 22141 df-cld 22268 |
This theorem is referenced by: opncldf3 22335 cmpfi 22657 |
Copyright terms: Public domain | W3C validator |