MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf1 Structured version   Visualization version   GIF version

Theorem opncldf1 21981
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑢,𝐽   𝑢,𝑋,𝑥
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf1
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 opncldf.1 . . 3 𝑋 = 𝐽
32opncld 21930 . 2 ((𝐽 ∈ Top ∧ 𝑢𝐽) → (𝑋𝑢) ∈ (Clsd‘𝐽))
42cldopn 21928 . . 3 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
54adantl 485 . 2 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62cldss 21926 . . . . . . 7 (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋)
76ad2antll 729 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥𝑋)
8 dfss4 4173 . . . . . 6 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
97, 8sylib 221 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
109eqcomd 2743 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋𝑥)))
11 difeq2 4031 . . . . 5 (𝑢 = (𝑋𝑥) → (𝑋𝑢) = (𝑋 ∖ (𝑋𝑥)))
1211eqeq2d 2748 . . . 4 (𝑢 = (𝑋𝑥) → (𝑥 = (𝑋𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋𝑥))))
1310, 12syl5ibrcom 250 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) → 𝑥 = (𝑋𝑢)))
142eltopss 21804 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽) → 𝑢𝑋)
1514adantrr 717 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢𝑋)
16 dfss4 4173 . . . . . 6 (𝑢𝑋 ↔ (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1715, 16sylib 221 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1817eqcomd 2743 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋𝑢)))
19 difeq2 4031 . . . . 5 (𝑥 = (𝑋𝑢) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑢)))
2019eqeq2d 2748 . . . 4 (𝑥 = (𝑋𝑢) → (𝑢 = (𝑋𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋𝑢))))
2118, 20syl5ibrcom 250 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋𝑢) → 𝑢 = (𝑋𝑥)))
2213, 21impbid 215 . 2 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) ↔ 𝑥 = (𝑋𝑢)))
231, 3, 5, 22f1ocnv2d 7458 1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  wss 3866   cuni 4819  cmpt 5135  ccnv 5550  1-1-ontowf1o 6379  cfv 6380  Topctop 21790  Clsdccld 21913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-top 21791  df-cld 21916
This theorem is referenced by:  opncldf3  21983  cmpfi  22305
  Copyright terms: Public domain W3C validator