MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf1 Structured version   Visualization version   GIF version

Theorem opncldf1 22143
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑢,𝐽   𝑢,𝑋,𝑥
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf1
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 opncldf.1 . . 3 𝑋 = 𝐽
32opncld 22092 . 2 ((𝐽 ∈ Top ∧ 𝑢𝐽) → (𝑋𝑢) ∈ (Clsd‘𝐽))
42cldopn 22090 . . 3 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
54adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62cldss 22088 . . . . . . 7 (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋)
76ad2antll 725 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥𝑋)
8 dfss4 4189 . . . . . 6 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
97, 8sylib 217 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
109eqcomd 2744 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋𝑥)))
11 difeq2 4047 . . . . 5 (𝑢 = (𝑋𝑥) → (𝑋𝑢) = (𝑋 ∖ (𝑋𝑥)))
1211eqeq2d 2749 . . . 4 (𝑢 = (𝑋𝑥) → (𝑥 = (𝑋𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋𝑥))))
1310, 12syl5ibrcom 246 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) → 𝑥 = (𝑋𝑢)))
142eltopss 21964 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽) → 𝑢𝑋)
1514adantrr 713 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢𝑋)
16 dfss4 4189 . . . . . 6 (𝑢𝑋 ↔ (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1715, 16sylib 217 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1817eqcomd 2744 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋𝑢)))
19 difeq2 4047 . . . . 5 (𝑥 = (𝑋𝑢) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑢)))
2019eqeq2d 2749 . . . 4 (𝑥 = (𝑋𝑢) → (𝑢 = (𝑋𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋𝑢))))
2118, 20syl5ibrcom 246 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋𝑢) → 𝑢 = (𝑋𝑥)))
2213, 21impbid 211 . 2 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) ↔ 𝑥 = (𝑋𝑢)))
231, 3, 5, 22f1ocnv2d 7500 1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883   cuni 4836  cmpt 5153  ccnv 5579  1-1-ontowf1o 6417  cfv 6418  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078
This theorem is referenced by:  opncldf3  22145  cmpfi  22467
  Copyright terms: Public domain W3C validator