![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnneiss | Structured version Visualization version GIF version |
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
Ref | Expression |
---|---|
opnneiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ 𝑁) | |
2 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | eltopss 22928 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
4 | sstr 4003 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ ∪ 𝐽) → 𝑆 ⊆ ∪ 𝐽) | |
5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝑁 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
6 | 3, 5 | stoic3 1772 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
7 | 2 | opnneissb 23137 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
8 | 6, 7 | syld3an3 1408 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
9 | 1, 8 | mpbid 232 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 neicnei 23120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-nei 23121 |
This theorem is referenced by: opnneip 23142 tpnei 23144 topssnei 23147 opnneiid 23149 neissex 23150 cmpkgen 23574 opnneir 48702 |
Copyright terms: Public domain | W3C validator |