MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneiss Structured version   Visualization version   GIF version

Theorem opnneiss 22039
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
Assertion
Ref Expression
opnneiss ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem opnneiss
StepHypRef Expression
1 simp3 1140 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆𝑁)
2 eqid 2738 . . . . 5 𝐽 = 𝐽
32eltopss 21828 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁 𝐽)
4 sstr 3923 . . . . 5 ((𝑆𝑁𝑁 𝐽) → 𝑆 𝐽)
54ancoms 462 . . . 4 ((𝑁 𝐽𝑆𝑁) → 𝑆 𝐽)
63, 5stoic3 1784 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆 𝐽)
72opnneissb 22035 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆 𝐽) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
86, 7syld3an3 1411 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
91, 8mpbid 235 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089  wcel 2111  wss 3880   cuni 4833  cfv 6397  Topctop 21814  neicnei 22018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-top 21815  df-nei 22019
This theorem is referenced by:  opnneip  22040  tpnei  22042  topssnei  22045  opnneiid  22047  neissex  22048  cmpkgen  22472  opnneir  45901
  Copyright terms: Public domain W3C validator