MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneiss Structured version   Visualization version   GIF version

Theorem opnneiss 22269
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
Assertion
Ref Expression
opnneiss ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem opnneiss
StepHypRef Expression
1 simp3 1137 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆𝑁)
2 eqid 2738 . . . . 5 𝐽 = 𝐽
32eltopss 22056 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁 𝐽)
4 sstr 3929 . . . . 5 ((𝑆𝑁𝑁 𝐽) → 𝑆 𝐽)
54ancoms 459 . . . 4 ((𝑁 𝐽𝑆𝑁) → 𝑆 𝐽)
63, 5stoic3 1779 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆 𝐽)
72opnneissb 22265 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆 𝐽) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
86, 7syld3an3 1408 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
91, 8mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wcel 2106  wss 3887   cuni 4839  cfv 6433  Topctop 22042  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-nei 22249
This theorem is referenced by:  opnneip  22270  tpnei  22272  topssnei  22275  opnneiid  22277  neissex  22278  cmpkgen  22702  opnneir  46200
  Copyright terms: Public domain W3C validator