| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnneiss | Structured version Visualization version GIF version | ||
| Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
| Ref | Expression |
|---|---|
| opnneiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ 𝑁) | |
| 2 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | eltopss 22843 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
| 4 | sstr 3967 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ ∪ 𝐽) → 𝑆 ⊆ ∪ 𝐽) | |
| 5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝑁 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
| 6 | 3, 5 | stoic3 1776 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
| 7 | 2 | opnneissb 23050 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 8 | 6, 7 | syld3an3 1411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6530 Topctop 22829 neicnei 23033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-top 22830 df-nei 23034 |
| This theorem is referenced by: opnneip 23055 tpnei 23057 topssnei 23060 opnneiid 23062 neissex 23063 cmpkgen 23487 opnneir 48829 |
| Copyright terms: Public domain | W3C validator |