![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem7 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem8 47669. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem5.3 | ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
iscnrm3rlem7.4 | ⊢ (𝜑 → 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
Ref | Expression |
---|---|
iscnrm3rlem7 | ⊢ (𝜑 → 𝑂 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3rlem7.4 | . 2 ⊢ (𝜑 → 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) | |
2 | iscnrm3rlem4.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | iscnrm3rlem4.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
4 | iscnrm3rlem5.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) | |
5 | 2 | uniexd 7735 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝐽 ∈ V) |
6 | 5 | difexd 5330 | . . . . . 6 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ V) |
7 | resttop 22885 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ V) → (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∈ Top) | |
8 | 2, 6, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∈ Top) |
9 | eqid 2731 | . . . . . 6 ⊢ ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) = ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) | |
10 | 9 | eltopss 22630 | . . . . 5 ⊢ (((𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∈ Top ∧ 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) → 𝑂 ⊆ ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
11 | 8, 1, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑂 ⊆ ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
12 | difssd 4133 | . . . . 5 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ⊆ ∪ 𝐽) | |
13 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
14 | 13 | restuni 22887 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ⊆ ∪ 𝐽) → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) = ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
15 | 2, 12, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) = ∪ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
16 | 11, 15 | sseqtrrd 4024 | . . 3 ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) |
17 | 2, 3, 4, 16 | iscnrm3rlem6 47667 | . 2 ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) |
18 | 1, 17 | mpbid 231 | 1 ⊢ (𝜑 → 𝑂 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∪ cuni 4909 ‘cfv 6544 (class class class)co 7412 ↾t crest 17371 Topctop 22616 clsccl 22743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-en 8943 df-fin 8946 df-fi 9409 df-rest 17373 df-topgen 17394 df-top 22617 df-topon 22634 df-bases 22670 df-cld 22744 df-cls 22746 |
This theorem is referenced by: iscnrm3rlem8 47669 |
Copyright terms: Public domain | W3C validator |