MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasnopn Structured version   Visualization version   GIF version

Theorem imasnopn 21992
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1 𝑋 = 𝐽
Assertion
Ref Expression
imasnopn (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)

Proof of Theorem imasnopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1873 . . . 4 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋))
2 nfcv 2926 . . . 4 𝑦(𝑅 “ {𝐴})
3 nfrab1 3318 . . . 4 𝑦{𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4 txtop 21871 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
54adantr 473 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
6 simprl 758 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ∈ (𝐽 ×t 𝐾))
7 eqid 2772 . . . . . . . . . . . . 13 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
87eltopss 21209 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → 𝑅 (𝐽 ×t 𝐾))
95, 6, 8syl2anc 576 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
10 imasnopn.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
11 eqid 2772 . . . . . . . . . . . . 13 𝐾 = 𝐾
1210, 11txuni 21894 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
1312adantr 473 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
149, 13sseqtr4d 3894 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝐾))
15 imass1 5798 . . . . . . . . . 10 (𝑅 ⊆ (𝑋 × 𝐾) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
1614, 15syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
17 xpimasn 5876 . . . . . . . . . 10 (𝐴𝑋 → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1817ad2antll 716 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1916, 18sseqtrd 3893 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝐾)
2019sseld 3853 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦 𝐾))
2120pm4.71rd 555 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴}))))
22 elimasng 5789 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2322elvd 3415 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2423ad2antll 716 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2524anbi2d 619 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
2621, 25bitrd 271 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
27 rabid 3311 . . . . 5 (𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2826, 27syl6bbr 281 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
291, 2, 3, 28eqrd 3873 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
30 eqid 2772 . . . 4 (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) = (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩)
3130mptpreima 5925 . . 3 ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
3229, 31syl6eqr 2826 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
3311toptopon 21219 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3433biimpi 208 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
3534ad2antlr 714 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘ 𝐾))
3610toptopon 21219 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3736biimpi 208 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
3837ad2antrr 713 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
39 simprr 760 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐴𝑋)
4035, 38, 39cnmptc 21964 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝐴) ∈ (𝐾 Cn 𝐽))
4135cnmptid 21963 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝑦) ∈ (𝐾 Cn 𝐾))
4235, 40, 41cnmpt1t 21967 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
43 cnima 21567 . . 3 (((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4442, 6, 43syl2anc 576 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4532, 44eqeltrd 2860 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  {crab 3086  Vcvv 3409  wss 3825  {csn 4435  cop 4441   cuni 4706  cmpt 5002   × cxp 5398  ccnv 5399  cima 5403  cfv 6182  (class class class)co 6970  Topctop 21195  TopOnctopon 21212   Cn ccn 21526   ×t ctx 21862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7494  df-2nd 7495  df-map 8200  df-topgen 16563  df-top 21196  df-topon 21213  df-bases 21248  df-cn 21529  df-cnp 21530  df-tx 21864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator