MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasnopn Structured version   Visualization version   GIF version

Theorem imasnopn 23577
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1 𝑋 = 𝐽
Assertion
Ref Expression
imasnopn (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)

Proof of Theorem imasnopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋))
2 nfcv 2891 . . . 4 𝑦(𝑅 “ {𝐴})
3 nfrab1 3426 . . . 4 𝑦{𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4 txtop 23456 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
54adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
6 simprl 770 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ∈ (𝐽 ×t 𝐾))
7 eqid 2729 . . . . . . . . . . . . 13 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
87eltopss 22794 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → 𝑅 (𝐽 ×t 𝐾))
95, 6, 8syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
10 imasnopn.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
11 eqid 2729 . . . . . . . . . . . . 13 𝐾 = 𝐾
1210, 11txuni 23479 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
1312adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑋 × 𝐾) = (𝐽 ×t 𝐾))
149, 13sseqtrrd 3984 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝐾))
15 imass1 6072 . . . . . . . . . 10 (𝑅 ⊆ (𝑋 × 𝐾) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
1614, 15syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝐾) “ {𝐴}))
17 xpimasn 6158 . . . . . . . . . 10 (𝐴𝑋 → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1817ad2antll 729 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑋 × 𝐾) “ {𝐴}) = 𝐾)
1916, 18sseqtrd 3983 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝐾)
2019sseld 3945 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦 𝐾))
2120pm4.71rd 562 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴}))))
22 elimasng 6060 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2322elvd 3453 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2423ad2antll 729 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2524anbi2d 630 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
2621, 25bitrd 279 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
27 rabid 3427 . . . . 5 (𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦 𝐾 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
2826, 27bitr4di 289 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
291, 2, 3, 28eqrd 3966 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
30 eqid 2729 . . . 4 (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) = (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩)
3130mptpreima 6211 . . 3 ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦 𝐾 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
3229, 31eqtr4di 2782 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
3311toptopon 22804 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3433biimpi 216 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
3534ad2antlr 727 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘ 𝐾))
3610toptopon 22804 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3736biimpi 216 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
3837ad2antrr 726 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
39 simprr 772 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → 𝐴𝑋)
4035, 38, 39cnmptc 23549 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝐴) ∈ (𝐾 Cn 𝐽))
4135cnmptid 23548 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾𝑦) ∈ (𝐾 Cn 𝐾))
4235, 40, 41cnmpt1t 23552 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
43 cnima 23152 . . 3 (((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 ∈ (𝐽 ×t 𝐾)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4442, 6, 43syl2anc 584 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → ((𝑦 𝐾 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) ∈ 𝐾)
4532, 44eqeltrd 2828 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  {csn 4589  cop 4595   cuni 4871  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797   Cn ccn 23111   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator