Step | Hyp | Ref
| Expression |
1 | | cnvimass 5978 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
2 | | fdm 6593 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
3 | 1, 2 | sseqtrid 3969 |
. . . . . . 7
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
4 | 3 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
5 | 4 | ad2antrr 722 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
6 | | neii2 22167 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
7 | 6 | 3ad2antl2 1184 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
8 | 7 | ad2ant2rl 745 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
9 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
10 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → 𝑔 ∈ 𝐾) |
11 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐴) ∈ V |
12 | 11 | snss 4716 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝐴) ∈ 𝑔 ↔ {(𝐹‘𝐴)} ⊆ 𝑔) |
13 | 12 | biimpri 227 |
. . . . . . . . . . . 12
⊢ ({(𝐹‘𝐴)} ⊆ 𝑔 → (𝐹‘𝐴) ∈ 𝑔) |
14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦) → (𝐹‘𝐴) ∈ 𝑔) |
15 | 14 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹‘𝐴) ∈ 𝑔) |
16 | 9, 10, 15 | 3jca 1126 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔)) |
17 | 16 | adantll 710 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔)) |
18 | | cnpimaex 22315 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔)) |
20 | | sstr2 3924 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝑔 ⊆ 𝑦 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
21 | 20 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑔 ⊆ 𝑦 → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
22 | 21 | ad2antll 725 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
23 | 22 | ad2antlr 723 |
. . . . . . . . . 10
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
24 | | ffun 6587 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
25 | 24 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → Fun 𝐹) |
26 | 25 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → Fun 𝐹) |
27 | 26 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → Fun 𝐹) |
28 | | cnpnei.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑋 = ∪
𝐽 |
29 | 28 | eltopss 21964 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
30 | 29 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
31 | 2 | sseq2d 3949 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋⟶𝑌 → (𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋)) |
32 | 31 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → (𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋)) |
33 | 30, 32 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
34 | 33 | 3adantl2 1165 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
35 | 34 | adantlr 711 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
36 | 35 | ad4ant14 748 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
37 | | funimass3 6913 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑜 ⊆ dom 𝐹) → ((𝐹 “ 𝑜) ⊆ 𝑦 ↔ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
38 | 27, 36, 37 | syl2anc 583 |
. . . . . . . . . 10
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑦 ↔ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
39 | 23, 38 | sylibd 238 |
. . . . . . . . 9
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑔 → 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
40 | 39 | anim2d 611 |
. . . . . . . 8
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔) → (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦)))) |
41 | 40 | reximdva 3202 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦)))) |
42 | 19, 41 | mpd 15 |
. . . . . 6
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
43 | 8, 42 | rexlimddv 3219 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
44 | 28 | isneip 22164 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
45 | 44 | 3ad2antl1 1183 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
46 | 45 | adantr 480 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
47 | 5, 43, 46 | mpbir2and 709 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → (◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) |
48 | 47 | exp32 420 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}) → (◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})))) |
49 | 48 | ralrimdv 3111 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
50 | | simpll3 1212 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋⟶𝑌) |
51 | | opnneip 22178 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) |
52 | | imaeq2 5954 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑜 → (◡𝐹 “ 𝑦) = (◡𝐹 “ 𝑜)) |
53 | 52 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑜 → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
54 | 53 | rspcv 3547 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
55 | 51, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
56 | 55 | 3com23 1124 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ (𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
57 | 56 | 3expb 1118 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
58 | 57 | 3ad2antl2 1184 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
59 | 58 | adantlr 711 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
60 | | neii2 22167 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
61 | 60 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
62 | 61 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
63 | 62 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
64 | | snssg 4715 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑔 ↔ {𝐴} ⊆ 𝑔)) |
65 | 64 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → (𝐴 ∈ 𝑔 ↔ {𝐴} ⊆ 𝑔)) |
66 | 25 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → Fun 𝐹) |
67 | 28 | eltopss 21964 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ 𝑋) |
68 | 67 | 3ad2antl1 1183 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ 𝑋) |
69 | 2 | sseq2d 3949 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋⟶𝑌 → (𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋)) |
70 | 69 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋)) |
71 | 70 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ⊆ 𝑋) → 𝑔 ⊆ dom 𝐹) |
72 | 68, 71 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ dom 𝐹) |
73 | 72 | ad4ant14 748 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ dom 𝐹) |
74 | | funimass3 6913 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑔 ⊆ dom 𝐹) → ((𝐹 “ 𝑔) ⊆ 𝑜 ↔ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
75 | 66, 73, 74 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → ((𝐹 “ 𝑔) ⊆ 𝑜 ↔ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
76 | 65, 75 | anbi12d 630 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → ((𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
77 | 76 | biimprd 247 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → (({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)) → (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
78 | 77 | reximdva 3202 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
79 | 59, 63, 78 | 3syld 60 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
80 | 79 | exp32 420 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) ∈ 𝑜 → (𝑜 ∈ 𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
81 | 80 | com24 95 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜 ∈ 𝐾 → ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
82 | 81 | imp 406 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜 ∈ 𝐾 → ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜)))) |
83 | 82 | ralrimiv 3106 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
84 | | cnpnei.2 |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝐾 |
85 | 28, 84 | iscnp2 22298 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
86 | 85 | baib 535 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
87 | 86 | 3expa 1116 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
88 | 87 | 3adantl3 1166 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
89 | 88 | adantr 480 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
90 | 50, 83, 89 | mpbir2and 709 |
. . 3
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
91 | 90 | ex 412 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
92 | 49, 91 | impbid 211 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |