MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpnei Structured version   Visualization version   GIF version

Theorem cnpnei 21440
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1 𝑋 = 𝐽
cnpnei.2 𝑌 = 𝐾
Assertion
Ref Expression
cnpnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem cnpnei
Dummy variables 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5727 . . . . . . . 8 (𝐹𝑦) ⊆ dom 𝐹
2 fdm 6287 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
31, 2syl5sseq 3879 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
433ad2ant3 1171 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
54ad2antrr 719 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ⊆ 𝑋)
6 neii2 21284 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
763ad2antl2 1243 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
87ad2ant2rl 757 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑔𝐾 ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))
9 simpll 785 . . . . . . . . . 10 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
10 simprl 789 . . . . . . . . . 10 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → 𝑔𝐾)
11 fvex 6447 . . . . . . . . . . . . . 14 (𝐹𝐴) ∈ V
1211snss 4536 . . . . . . . . . . . . 13 ((𝐹𝐴) ∈ 𝑔 ↔ {(𝐹𝐴)} ⊆ 𝑔)
1312biimpri 220 . . . . . . . . . . . 12 ({(𝐹𝐴)} ⊆ 𝑔 → (𝐹𝐴) ∈ 𝑔)
1413adantr 474 . . . . . . . . . . 11 (({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦) → (𝐹𝐴) ∈ 𝑔)
1514ad2antll 722 . . . . . . . . . 10 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹𝐴) ∈ 𝑔)
169, 10, 153jca 1164 . . . . . . . . 9 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔))
1716adantll 707 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔))
18 cnpimaex 21432 . . . . . . . 8 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔𝐾 ∧ (𝐹𝐴) ∈ 𝑔) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
1917, 18syl 17 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔))
20 sstr2 3835 . . . . . . . . . . . . 13 ((𝐹𝑜) ⊆ 𝑔 → (𝑔𝑦 → (𝐹𝑜) ⊆ 𝑦))
2120com12 32 . . . . . . . . . . . 12 (𝑔𝑦 → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
2221ad2antll 722 . . . . . . . . . . 11 ((𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦)) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
2322ad2antlr 720 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔 → (𝐹𝑜) ⊆ 𝑦))
24 ffun 6282 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
25243ad2ant3 1171 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → Fun 𝐹)
2625ad2antrr 719 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → Fun 𝐹)
2726ad2antrr 719 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → Fun 𝐹)
28 cnpnei.1 . . . . . . . . . . . . . . . . . 18 𝑋 = 𝐽
2928eltopss 21083 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3029adantlr 708 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜𝑋)
312sseq2d 3859 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋𝑌 → (𝑜 ⊆ dom 𝐹𝑜𝑋))
3231ad2antlr 720 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ dom 𝐹𝑜𝑋))
3330, 32mpbird 249 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
34333adantl2 1214 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
3534adantlr 708 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
3635adantlr 708 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
3736adantlr 708 . . . . . . . . . . 11 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → 𝑜 ⊆ dom 𝐹)
38 funimass3 6583 . . . . . . . . . . 11 ((Fun 𝐹𝑜 ⊆ dom 𝐹) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
3927, 37, 38syl2anc 581 . . . . . . . . . 10 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑦𝑜 ⊆ (𝐹𝑦)))
4023, 39sylibd 231 . . . . . . . . 9 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐹𝑜) ⊆ 𝑔𝑜 ⊆ (𝐹𝑦)))
4140anim2d 607 . . . . . . . 8 ((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) ∧ 𝑜𝐽) → ((𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
4241reximdva 3226 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → (∃𝑜𝐽 (𝐴𝑜 ∧ (𝐹𝑜) ⊆ 𝑔) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦))))
4319, 42mpd 15 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) ∧ (𝑔𝐾 ∧ ({(𝐹𝐴)} ⊆ 𝑔𝑔𝑦))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
448, 43rexlimddv 3246 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))
4528isneip 21281 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
46453ad2antl1 1242 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
4746adantr 474 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((𝐹𝑦) ⊆ 𝑋 ∧ ∃𝑜𝐽 (𝐴𝑜𝑜 ⊆ (𝐹𝑦)))))
485, 44, 47mpbir2and 706 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))
4948exp32 413 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}))))
5049ralrimdv 3178 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
51 simpll3 1279 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋𝑌)
52 opnneip 21295 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}))
53 imaeq2 5704 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑜 → (𝐹𝑦) = (𝐹𝑜))
5453eleq1d 2892 . . . . . . . . . . . . . . 15 (𝑦 = 𝑜 → ((𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
5554rspcv 3523 . . . . . . . . . . . . . 14 (𝑜 ∈ ((nei‘𝐾)‘{(𝐹𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
5652, 55syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑜𝐾 ∧ (𝐹𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
57563com23 1162 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ (𝐹𝐴) ∈ 𝑜𝑜𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
58573expb 1155 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
59583ad2antl2 1243 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
6059adantlr 708 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})))
61 neii2 21284 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)))
6261ex 403 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
63623ad2ant1 1169 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
6463ad2antrr 719 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → ((𝐹𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
65 snssg 4535 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
6665ad3antlr 724 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (𝐴𝑔 ↔ {𝐴} ⊆ 𝑔))
6725ad3antrrr 723 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → Fun 𝐹)
6828eltopss 21083 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑔𝐽) → 𝑔𝑋)
69683ad2antl1 1242 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔𝑋)
702sseq2d 3859 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋𝑌 → (𝑔 ⊆ dom 𝐹𝑔𝑋))
71703ad2ant3 1171 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝑔 ⊆ dom 𝐹𝑔𝑋))
7271biimpar 471 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝑋) → 𝑔 ⊆ dom 𝐹)
7369, 72syldan 587 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
7473adantlr 708 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
7574adantlr 708 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → 𝑔 ⊆ dom 𝐹)
76 funimass3 6583 . . . . . . . . . . . . 13 ((Fun 𝐹𝑔 ⊆ dom 𝐹) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
7767, 75, 76syl2anc 581 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐹𝑔) ⊆ 𝑜𝑔 ⊆ (𝐹𝑜)))
7866, 77anbi12d 626 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → ((𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜))))
7978biimprd 240 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) ∧ 𝑔𝐽) → (({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8079reximdva 3226 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∃𝑔𝐽 ({𝐴} ⊆ 𝑔𝑔 ⊆ (𝐹𝑜)) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8160, 64, 803syld 60 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ((𝐹𝐴) ∈ 𝑜𝑜𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
8281exp32 413 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ 𝑜 → (𝑜𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
8382com24 95 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
8483imp 397 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜𝐾 → ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜))))
8584ralrimiv 3175 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))
86 cnpnei.2 . . . . . . . . 9 𝑌 = 𝐾
8728, 86iscnp2 21415 . . . . . . . 8 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
8887baib 533 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
89883expa 1153 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
90893adantl3 1215 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9190adantr 474 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑜𝐾 ((𝐹𝐴) ∈ 𝑜 → ∃𝑔𝐽 (𝐴𝑔 ∧ (𝐹𝑔) ⊆ 𝑜)))))
9251, 85, 91mpbir2and 706 . . 3 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9392ex 403 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
9450, 93impbid 204 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝐴)})(𝐹𝑦) ∈ ((nei‘𝐽)‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3118  wrex 3119  wss 3799  {csn 4398   cuni 4659  ccnv 5342  dom cdm 5343  cima 5346  Fun wfun 6118  wf 6120  cfv 6124  (class class class)co 6906  Topctop 21069  neicnei 21273   CnP ccnp 21401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-map 8125  df-top 21070  df-topon 21087  df-nei 21274  df-cnp 21404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator