Step | Hyp | Ref
| Expression |
1 | | cnvimass 5727 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
2 | | fdm 6287 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
3 | 1, 2 | syl5sseq 3879 |
. . . . . . 7
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
4 | 3 | 3ad2ant3 1171 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
5 | 4 | ad2antrr 719 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
6 | | neii2 21284 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
7 | 6 | 3ad2antl2 1243 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
8 | 7 | ad2ant2rl 757 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ∃𝑔 ∈ 𝐾 ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) |
9 | | simpll 785 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
10 | | simprl 789 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → 𝑔 ∈ 𝐾) |
11 | | fvex 6447 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐴) ∈ V |
12 | 11 | snss 4536 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝐴) ∈ 𝑔 ↔ {(𝐹‘𝐴)} ⊆ 𝑔) |
13 | 12 | biimpri 220 |
. . . . . . . . . . . 12
⊢ ({(𝐹‘𝐴)} ⊆ 𝑔 → (𝐹‘𝐴) ∈ 𝑔) |
14 | 13 | adantr 474 |
. . . . . . . . . . 11
⊢ (({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦) → (𝐹‘𝐴) ∈ 𝑔) |
15 | 14 | ad2antll 722 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹‘𝐴) ∈ 𝑔) |
16 | 9, 10, 15 | 3jca 1164 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔)) |
17 | 16 | adantll 707 |
. . . . . . . 8
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔)) |
18 | | cnpimaex 21432 |
. . . . . . . 8
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑔 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑔) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔)) |
20 | | sstr2 3835 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝑔 ⊆ 𝑦 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
21 | 20 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑔 ⊆ 𝑦 → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
22 | 21 | ad2antll 722 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)) → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
23 | 22 | ad2antlr 720 |
. . . . . . . . . 10
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑔 → (𝐹 “ 𝑜) ⊆ 𝑦)) |
24 | | ffun 6282 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
25 | 24 | 3ad2ant3 1171 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → Fun 𝐹) |
26 | 25 | ad2antrr 719 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → Fun 𝐹) |
27 | 26 | ad2antrr 719 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → Fun 𝐹) |
28 | | cnpnei.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑋 = ∪
𝐽 |
29 | 28 | eltopss 21083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
30 | 29 | adantlr 708 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
31 | 2 | sseq2d 3859 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋⟶𝑌 → (𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋)) |
32 | 31 | ad2antlr 720 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → (𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋)) |
33 | 30, 32 | mpbird 249 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
34 | 33 | 3adantl2 1214 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
35 | 34 | adantlr 708 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
36 | 35 | adantlr 708 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
37 | 36 | adantlr 708 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ dom 𝐹) |
38 | | funimass3 6583 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑜 ⊆ dom 𝐹) → ((𝐹 “ 𝑜) ⊆ 𝑦 ↔ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
39 | 27, 37, 38 | syl2anc 581 |
. . . . . . . . . 10
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑦 ↔ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
40 | 23, 39 | sylibd 231 |
. . . . . . . . 9
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐹 “ 𝑜) ⊆ 𝑔 → 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
41 | 40 | anim2d 607 |
. . . . . . . 8
⊢
((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) ∧ 𝑜 ∈ 𝐽) → ((𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔) → (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦)))) |
42 | 41 | reximdva 3226 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → (∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ (𝐹 “ 𝑜) ⊆ 𝑔) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦)))) |
43 | 19, 42 | mpd 15 |
. . . . . 6
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) ∧ (𝑔 ∈ 𝐾 ∧ ({(𝐹‘𝐴)} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
44 | 8, 43 | rexlimddv 3246 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))) |
45 | 28 | isneip 21281 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
46 | 45 | 3ad2antl1 1242 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
47 | 46 | adantr 474 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ ((◡𝐹 “ 𝑦) ⊆ 𝑋 ∧ ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ (◡𝐹 “ 𝑦))))) |
48 | 5, 44, 47 | mpbir2and 706 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}))) → (◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) |
49 | 48 | exp32 413 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}) → (◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})))) |
50 | 49 | ralrimdv 3178 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
51 | | simpll3 1279 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹:𝑋⟶𝑌) |
52 | | opnneip 21295 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})) |
53 | | imaeq2 5704 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑜 → (◡𝐹 “ 𝑦) = (◡𝐹 “ 𝑜)) |
54 | 53 | eleq1d 2892 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑜 → ((◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) ↔ (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
55 | 54 | rspcv 3523 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)}) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
56 | 52, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑜) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
57 | 56 | 3com23 1162 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ (𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
58 | 57 | 3expb 1155 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
59 | 58 | 3ad2antl2 1243 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
60 | 59 | adantlr 708 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}))) |
61 | | neii2 21284 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
62 | 61 | ex 403 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
63 | 62 | 3ad2ant1 1169 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
64 | 63 | ad2antrr 719 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → ((◡𝐹 “ 𝑜) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
65 | | snssg 4535 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑔 ↔ {𝐴} ⊆ 𝑔)) |
66 | 65 | ad3antlr 724 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → (𝐴 ∈ 𝑔 ↔ {𝐴} ⊆ 𝑔)) |
67 | 25 | ad3antrrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → Fun 𝐹) |
68 | 28 | eltopss 21083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ 𝑋) |
69 | 68 | 3ad2antl1 1242 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ 𝑋) |
70 | 2 | sseq2d 3859 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑋⟶𝑌 → (𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋)) |
71 | 70 | 3ad2ant3 1171 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋)) |
72 | 71 | biimpar 471 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ⊆ 𝑋) → 𝑔 ⊆ dom 𝐹) |
73 | 69, 72 | syldan 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ dom 𝐹) |
74 | 73 | adantlr 708 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ dom 𝐹) |
75 | 74 | adantlr 708 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → 𝑔 ⊆ dom 𝐹) |
76 | | funimass3 6583 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑔 ⊆ dom 𝐹) → ((𝐹 “ 𝑔) ⊆ 𝑜 ↔ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
77 | 67, 75, 76 | syl2anc 581 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → ((𝐹 “ 𝑔) ⊆ 𝑜 ↔ 𝑔 ⊆ (◡𝐹 “ 𝑜))) |
78 | 66, 77 | anbi12d 626 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → ((𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜) ↔ ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)))) |
79 | 78 | biimprd 240 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top ∧
𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) ∧ 𝑔 ∈ 𝐽) → (({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)) → (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
80 | 79 | reximdva 3226 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∃𝑔 ∈ 𝐽 ({𝐴} ⊆ 𝑔 ∧ 𝑔 ⊆ (◡𝐹 “ 𝑜)) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
81 | 60, 64, 80 | 3syld 60 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ((𝐹‘𝐴) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾)) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
82 | 81 | exp32 413 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) ∈ 𝑜 → (𝑜 ∈ 𝐾 → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
83 | 82 | com24 95 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → (𝑜 ∈ 𝐾 → ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
84 | 83 | imp 397 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝑜 ∈ 𝐾 → ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜)))) |
85 | 84 | ralrimiv 3175 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))) |
86 | | cnpnei.2 |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝐾 |
87 | 28, 86 | iscnp2 21415 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
88 | 87 | baib 533 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
89 | 88 | 3expa 1153 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
90 | 89 | 3adantl3 1215 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
91 | 90 | adantr 474 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑜 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑜 → ∃𝑔 ∈ 𝐽 (𝐴 ∈ 𝑔 ∧ (𝐹 “ 𝑔) ⊆ 𝑜))))) |
92 | 51, 85, 91 | mpbir2and 706 |
. . 3
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
93 | 92 | ex 403 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
94 | 50, 93 | impbid 204 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |