MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneissb Structured version   Visualization version   GIF version

Theorem opnneissb 23034
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnneissb ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnneissb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7 𝑋 = 𝐽
21eltopss 22827 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁𝑋)
32adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁𝑋)
4 ssid 3966 . . . . . . 7 𝑁𝑁
5 sseq2 3970 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑆𝑔𝑆𝑁))
6 sseq1 3969 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑔𝑁𝑁𝑁))
75, 6anbi12d 632 . . . . . . . 8 (𝑔 = 𝑁 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑁𝑁𝑁)))
87rspcev 3585 . . . . . . 7 ((𝑁𝐽 ∧ (𝑆𝑁𝑁𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
94, 8mpanr2 704 . . . . . 6 ((𝑁𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
109ad2ant2l 746 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
111isnei 23023 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1211ad2ant2r 747 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
133, 10, 12mpbir2and 713 . . . 4 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
1413exp43 436 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑆𝑋 → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))))
15143imp 1110 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
16 ssnei 23030 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
1716ex 412 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
18173ad2ant1 1133 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
1915, 18impbid 212 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3911   cuni 4867  cfv 6499  Topctop 22813  neicnei 23017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-top 22814  df-nei 23018
This theorem is referenced by:  opnneiss  23038
  Copyright terms: Public domain W3C validator