Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnneissb | Structured version Visualization version GIF version |
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnneissb | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | eltopss 21804 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ 𝑋) |
3 | 2 | adantr 484 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ⊆ 𝑋) |
4 | ssid 3923 | . . . . . . 7 ⊢ 𝑁 ⊆ 𝑁 | |
5 | sseq2 3927 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑁)) | |
6 | sseq1 3926 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑔 ⊆ 𝑁 ↔ 𝑁 ⊆ 𝑁)) | |
7 | 5, 6 | anbi12d 634 | . . . . . . . 8 ⊢ (𝑔 = 𝑁 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁))) |
8 | 7 | rspcev 3537 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 4, 8 | mpanr2 704 | . . . . . 6 ⊢ ((𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 9 | ad2ant2l 746 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | 1 | isnei 22000 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | ad2ant2r 747 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | 3, 10, 12 | mpbir2and 713 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
14 | 13 | exp43 440 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑆 ⊆ 𝑋 → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))) |
15 | 14 | 3imp 1113 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
16 | ssnei 22007 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
17 | 16 | ex 416 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
18 | 17 | 3ad2ant1 1135 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
19 | 15, 18 | impbid 215 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 ∪ cuni 4819 ‘cfv 6380 Topctop 21790 neicnei 21994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-top 21791 df-nei 21995 |
This theorem is referenced by: opnneiss 22015 |
Copyright terms: Public domain | W3C validator |