MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneissb Structured version   Visualization version   GIF version

Theorem opnneissb 21212
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnneissb ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnneissb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7 𝑋 = 𝐽
21eltopss 21005 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁𝑋)
32adantr 472 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁𝑋)
4 ssid 3785 . . . . . . 7 𝑁𝑁
5 sseq2 3789 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑆𝑔𝑆𝑁))
6 sseq1 3788 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑔𝑁𝑁𝑁))
75, 6anbi12d 624 . . . . . . . 8 (𝑔 = 𝑁 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑁𝑁𝑁)))
87rspcev 3462 . . . . . . 7 ((𝑁𝐽 ∧ (𝑆𝑁𝑁𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
94, 8mpanr2 695 . . . . . 6 ((𝑁𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
109ad2ant2l 752 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
111isnei 21201 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1211ad2ant2r 753 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
133, 10, 12mpbir2and 704 . . . 4 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
1413exp43 427 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑆𝑋 → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))))
15143imp 1137 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
16 ssnei 21208 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
1716ex 401 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
18173ad2ant1 1163 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
1915, 18impbid 203 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  wss 3734   cuni 4596  cfv 6070  Topctop 20991  neicnei 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-top 20992  df-nei 21196
This theorem is referenced by:  opnneiss  21216
  Copyright terms: Public domain W3C validator