Step | Hyp | Ref
| Expression |
1 | | neips.1 |
. . . . . . 7
β’ π = βͺ
π½ |
2 | 1 | eltopss 22400 |
. . . . . 6
β’ ((π½ β Top β§ π β π½) β π β π) |
3 | 2 | adantr 481 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β π β π) |
4 | | ssid 4003 |
. . . . . . 7
β’ π β π |
5 | | sseq2 4007 |
. . . . . . . . 9
β’ (π = π β (π β π β π β π)) |
6 | | sseq1 4006 |
. . . . . . . . 9
β’ (π = π β (π β π β π β π)) |
7 | 5, 6 | anbi12d 631 |
. . . . . . . 8
β’ (π = π β ((π β π β§ π β π) β (π β π β§ π β π))) |
8 | 7 | rspcev 3612 |
. . . . . . 7
β’ ((π β π½ β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | 4, 8 | mpanr2 702 |
. . . . . 6
β’ ((π β π½ β§ π β π) β βπ β π½ (π β π β§ π β π)) |
10 | 9 | ad2ant2l 744 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
11 | 1 | isnei 22598 |
. . . . . 6
β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 11 | ad2ant2r 745 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 3, 10, 12 | mpbir2and 711 |
. . . 4
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
14 | 13 | exp43 437 |
. . 3
β’ (π½ β Top β (π β π½ β (π β π β (π β π β π β ((neiβπ½)βπ))))) |
15 | 14 | 3imp 1111 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |
16 | | ssnei 22605 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
17 | 16 | ex 413 |
. . 3
β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π)) |
18 | 17 | 3ad2ant1 1133 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β ((neiβπ½)βπ) β π β π)) |
19 | 15, 18 | impbid 211 |
1
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |