Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnneissb | Structured version Visualization version GIF version |
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnneissb | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | eltopss 22101 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ 𝑋) |
3 | 2 | adantr 482 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ⊆ 𝑋) |
4 | ssid 3948 | . . . . . . 7 ⊢ 𝑁 ⊆ 𝑁 | |
5 | sseq2 3952 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑁)) | |
6 | sseq1 3951 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑔 ⊆ 𝑁 ↔ 𝑁 ⊆ 𝑁)) | |
7 | 5, 6 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑔 = 𝑁 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁))) |
8 | 7 | rspcev 3566 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 4, 8 | mpanr2 702 | . . . . . 6 ⊢ ((𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 9 | ad2ant2l 744 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | 1 | isnei 22299 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | ad2ant2r 745 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | 3, 10, 12 | mpbir2and 711 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
14 | 13 | exp43 438 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑆 ⊆ 𝑋 → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))) |
15 | 14 | 3imp 1111 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
16 | ssnei 22306 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
17 | 16 | ex 414 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
18 | 17 | 3ad2ant1 1133 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 ⊆ wss 3892 ∪ cuni 4844 ‘cfv 6458 Topctop 22087 neicnei 22293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-top 22088 df-nei 22294 |
This theorem is referenced by: opnneiss 22314 |
Copyright terms: Public domain | W3C validator |