Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnneissb | Structured version Visualization version GIF version |
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnneissb | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | eltopss 22037 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ 𝑋) |
3 | 2 | adantr 480 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ⊆ 𝑋) |
4 | ssid 3947 | . . . . . . 7 ⊢ 𝑁 ⊆ 𝑁 | |
5 | sseq2 3951 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑁)) | |
6 | sseq1 3950 | . . . . . . . . 9 ⊢ (𝑔 = 𝑁 → (𝑔 ⊆ 𝑁 ↔ 𝑁 ⊆ 𝑁)) | |
7 | 5, 6 | anbi12d 630 | . . . . . . . 8 ⊢ (𝑔 = 𝑁 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁))) |
8 | 7 | rspcev 3560 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 4, 8 | mpanr2 700 | . . . . . 6 ⊢ ((𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 9 | ad2ant2l 742 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | 1 | isnei 22235 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | ad2ant2r 743 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | 3, 10, 12 | mpbir2and 709 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
14 | 13 | exp43 436 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑆 ⊆ 𝑋 → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))) |
15 | 14 | 3imp 1109 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
16 | ssnei 22242 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
17 | 16 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
18 | 17 | 3ad2ant1 1131 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 Topctop 22023 neicnei 22229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-top 22024 df-nei 22230 |
This theorem is referenced by: opnneiss 22250 |
Copyright terms: Public domain | W3C validator |