MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneissb Structured version   Visualization version   GIF version

Theorem opnneissb 22246
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnneissb ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnneissb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7 𝑋 = 𝐽
21eltopss 22037 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁𝑋)
32adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁𝑋)
4 ssid 3947 . . . . . . 7 𝑁𝑁
5 sseq2 3951 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑆𝑔𝑆𝑁))
6 sseq1 3950 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑔𝑁𝑁𝑁))
75, 6anbi12d 630 . . . . . . . 8 (𝑔 = 𝑁 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑁𝑁𝑁)))
87rspcev 3560 . . . . . . 7 ((𝑁𝐽 ∧ (𝑆𝑁𝑁𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
94, 8mpanr2 700 . . . . . 6 ((𝑁𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
109ad2ant2l 742 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
111isnei 22235 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1211ad2ant2r 743 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
133, 10, 12mpbir2and 709 . . . 4 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
1413exp43 436 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑆𝑋 → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))))
15143imp 1109 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
16 ssnei 22242 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
1716ex 412 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
18173ad2ant1 1131 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
1915, 18impbid 211 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wrex 3066  wss 3891   cuni 4844  cfv 6430  Topctop 22023  neicnei 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-top 22024  df-nei 22230
This theorem is referenced by:  opnneiss  22250
  Copyright terms: Public domain W3C validator