MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitr Structured version   Visualization version   GIF version

Theorem neitr 22531
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
neitr.1 𝑋 = 𝐽
Assertion
Ref Expression
neitr ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))

Proof of Theorem neitr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . 6 𝑑(𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴)
2 nfv 1917 . . . . . . 7 𝑑 𝑐 (𝐽t 𝐴)
3 nfre1 3268 . . . . . . 7 𝑑𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)
42, 3nfan 1902 . . . . . 6 𝑑(𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
51, 4nfan 1902 . . . . 5 𝑑((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
6 simpl 483 . . . . . . 7 ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) → 𝑐 (𝐽t 𝐴))
76anim2i 617 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)))
8 simp-5r 784 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 (𝐽t 𝐴))
9 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ Top)
10 simp2 1137 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴𝑋)
11 neitr.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
1211restuni 22513 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
139, 10, 12syl2anc 584 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 = (𝐽t 𝐴))
1413ad5antr 732 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴 = (𝐽t 𝐴))
158, 14sseqtrrd 3985 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝐴)
1610ad5antr 732 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴𝑋)
1715, 16sstrd 3954 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝑋)
189ad5antr 732 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐽 ∈ Top)
19 simplr 767 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝐽)
2011eltopss 22256 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑒𝐽) → 𝑒𝑋)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝑋)
2221ssdifssd 4102 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑋)
2317, 22unssd 4146 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋)
24 simpr1l 1230 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝐵𝑑)
25243anassrs 1360 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑑)
26 simpr 485 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑 = (𝑒𝐴))
2725, 26sseqtrd 3984 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵 ⊆ (𝑒𝐴))
28 inss1 4188 . . . . . . . . . 10 (𝑒𝐴) ⊆ 𝑒
2927, 28sstrdi 3956 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑒)
30 inundif 4438 . . . . . . . . . 10 ((𝑒𝐴) ∪ (𝑒𝐴)) = 𝑒
31 simpr1r 1231 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝑑𝑐)
32313anassrs 1360 . . . . . . . . . . . 12 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑𝑐)
3326, 32eqsstrrd 3983 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑐)
34 unss1 4139 . . . . . . . . . . 11 ((𝑒𝐴) ⊆ 𝑐 → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3630, 35eqsstrrid 3993 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))
37 sseq2 3970 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝐵𝑏𝐵𝑒))
38 sseq1 3969 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)) ↔ 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴))))
3937, 38anbi12d 631 . . . . . . . . . 10 (𝑏 = 𝑒 → ((𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))) ↔ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))))
4039rspcev 3581 . . . . . . . . 9 ((𝑒𝐽 ∧ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
4119, 29, 36, 40syl12anc 835 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
42 indir 4235 . . . . . . . . . . 11 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴))
43 disjdifr 4432 . . . . . . . . . . . 12 ((𝑒𝐴) ∩ 𝐴) = ∅
4443uneq2i 4120 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴)) = ((𝑐𝐴) ∪ ∅)
45 un0 4350 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ∅) = (𝑐𝐴)
4642, 44, 453eqtri 2768 . . . . . . . . . 10 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = (𝑐𝐴)
47 df-ss 3927 . . . . . . . . . . 11 (𝑐𝐴 ↔ (𝑐𝐴) = 𝑐)
4847biimpi 215 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴) = 𝑐)
4946, 48eqtr2id 2789 . . . . . . . . 9 (𝑐𝐴𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
5015, 49syl 17 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
51 vex 3449 . . . . . . . . . 10 𝑐 ∈ V
52 vex 3449 . . . . . . . . . . 11 𝑒 ∈ V
5352difexi 5285 . . . . . . . . . 10 (𝑒𝐴) ∈ V
5451, 53unex 7680 . . . . . . . . 9 (𝑐 ∪ (𝑒𝐴)) ∈ V
55 sseq1 3969 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝑋 ↔ (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋))
56 sseq2 3970 . . . . . . . . . . . . 13 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑏𝑎𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
5756anbi2d 629 . . . . . . . . . . . 12 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝐵𝑏𝑏𝑎) ↔ (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5857rexbidv 3175 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) ↔ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5955, 58anbi12d 631 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ↔ ((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))))
60 ineq1 4165 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝐴) = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
6160eqeq2d 2747 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑐 = (𝑎𝐴) ↔ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)))
6259, 61anbi12d 631 . . . . . . . . 9 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) ↔ (((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))))
6354, 62spcev 3565 . . . . . . . 8 ((((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
6423, 41, 50, 63syl21anc 836 . . . . . . 7 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
659ad3antrrr 728 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐽 ∈ Top)
669uniexd 7679 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ V)
6711, 66eqeltrid 2842 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝑋 ∈ V)
6867, 10ssexd 5281 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 ∈ V)
6968ad3antrrr 728 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐴 ∈ V)
70 simplr 767 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝑑 ∈ (𝐽t 𝐴))
71 elrest 17309 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑑 ∈ (𝐽t 𝐴) ↔ ∃𝑒𝐽 𝑑 = (𝑒𝐴)))
7271biimpa 477 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 ∈ V) ∧ 𝑑 ∈ (𝐽t 𝐴)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7365, 69, 70, 72syl21anc 836 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7464, 73r19.29a 3159 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
757, 74sylanl1 678 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
76 simprr 771 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
775, 75, 76r19.29af 3251 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
78 inss2 4189 . . . . . . . . . 10 (𝑎𝐴) ⊆ 𝐴
79 sseq1 3969 . . . . . . . . . 10 (𝑐 = (𝑎𝐴) → (𝑐𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
8078, 79mpbiri 257 . . . . . . . . 9 (𝑐 = (𝑎𝐴) → 𝑐𝐴)
8180adantl 482 . . . . . . . 8 (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8281exlimiv 1933 . . . . . . 7 (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8382adantl 482 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐𝐴)
8413adantr 481 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝐴 = (𝐽t 𝐴))
8583, 84sseqtrd 3984 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐 (𝐽t 𝐴))
869ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐽 ∈ Top)
8768ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐴 ∈ V)
88 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝐽)
89 elrestr 17310 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏𝐽) → (𝑏𝐴) ∈ (𝐽t 𝐴))
9086, 87, 88, 89syl3anc 1371 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ∈ (𝐽t 𝐴))
91 simprl 769 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝑏)
92 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝐴)
9392ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝐴)
9491, 93ssind 4192 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵 ⊆ (𝑏𝐴))
95 simprr 771 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝑎)
9695ssrind 4195 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ (𝑎𝐴))
97 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑐 = (𝑎𝐴))
9896, 97sseqtrrd 3985 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ 𝑐)
9990, 94, 98jca32 516 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
10099ex 413 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) → ((𝐵𝑏𝑏𝑎) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
101100reximdva 3165 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
102101impr 455 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
103102an32s 650 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
104103expl 458 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
105104exlimdv 1936 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
106105imp 407 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
107 sseq2 3970 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝐵𝑑𝐵 ⊆ (𝑏𝐴)))
108 sseq1 3969 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝑑𝑐 ↔ (𝑏𝐴) ⊆ 𝑐))
109107, 108anbi12d 631 . . . . . . . 8 (𝑑 = (𝑏𝐴) → ((𝐵𝑑𝑑𝑐) ↔ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
110109rspcev 3581 . . . . . . 7 (((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
111110rexlimivw 3148 . . . . . 6 (∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
112106, 111syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
11385, 112jca 512 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
11477, 113impbida 799 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
115 resttop 22511 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
1169, 68, 115syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝐽t 𝐴) ∈ Top)
11792, 13sseqtrd 3984 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵 (𝐽t 𝐴))
118 eqid 2736 . . . . 5 (𝐽t 𝐴) = (𝐽t 𝐴)
119118isnei 22454 . . . 4 (((𝐽t 𝐴) ∈ Top ∧ 𝐵 (𝐽t 𝐴)) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
120116, 117, 119syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
121 fvex 6855 . . . . . 6 ((nei‘𝐽)‘𝐵) ∈ V
122 restval 17308 . . . . . 6 ((((nei‘𝐽)‘𝐵) ∈ V ∧ 𝐴 ∈ V) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
123121, 68, 122sylancr 587 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
124123eleq2d 2823 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ 𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))))
12592, 10sstrd 3954 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝑋)
126 eqid 2736 . . . . . . . . 9 (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) = (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))
127126elrnmpt 5911 . . . . . . . 8 (𝑐 ∈ V → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴)))
128127elv 3451 . . . . . . 7 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴))
129 df-rex 3074 . . . . . . 7 (∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
130128, 129bitri 274 . . . . . 6 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
13111isnei 22454 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↔ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))))
132131anbi1d 630 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
133132exbidv 1924 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
134130, 133bitrid 282 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
1359, 125, 134syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
136124, 135bitrd 278 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
137114, 120, 1363bitr4d 310 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ 𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴)))
138137eqrdv 2734 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   cuni 4865  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  t crest 17302  Topctop 22242  neicnei 22448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-en 8884  df-fin 8887  df-fi 9347  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-nei 22449
This theorem is referenced by:  flfcntr  23394  cnextfres1  23419
  Copyright terms: Public domain W3C validator