MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitr Structured version   Visualization version   GIF version

Theorem neitr 23067
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
neitr.1 𝑋 = 𝐽
Assertion
Ref Expression
neitr ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))

Proof of Theorem neitr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑑(𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴)
2 nfv 1914 . . . . . . 7 𝑑 𝑐 (𝐽t 𝐴)
3 nfre1 3262 . . . . . . 7 𝑑𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)
42, 3nfan 1899 . . . . . 6 𝑑(𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
51, 4nfan 1899 . . . . 5 𝑑((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
6 simpl 482 . . . . . . 7 ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) → 𝑐 (𝐽t 𝐴))
76anim2i 617 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)))
8 simp-5r 785 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 (𝐽t 𝐴))
9 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ Top)
10 simp2 1137 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴𝑋)
11 neitr.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
1211restuni 23049 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
139, 10, 12syl2anc 584 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 = (𝐽t 𝐴))
1413ad5antr 734 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴 = (𝐽t 𝐴))
158, 14sseqtrrd 3984 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝐴)
1610ad5antr 734 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴𝑋)
1715, 16sstrd 3957 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝑋)
189ad5antr 734 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐽 ∈ Top)
19 simplr 768 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝐽)
2011eltopss 22794 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑒𝐽) → 𝑒𝑋)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝑋)
2221ssdifssd 4110 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑋)
2317, 22unssd 4155 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋)
24 simpr1l 1231 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝐵𝑑)
25243anassrs 1361 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑑)
26 simpr 484 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑 = (𝑒𝐴))
2725, 26sseqtrd 3983 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵 ⊆ (𝑒𝐴))
28 inss1 4200 . . . . . . . . . 10 (𝑒𝐴) ⊆ 𝑒
2927, 28sstrdi 3959 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑒)
30 inundif 4442 . . . . . . . . . 10 ((𝑒𝐴) ∪ (𝑒𝐴)) = 𝑒
31 simpr1r 1232 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝑑𝑐)
32313anassrs 1361 . . . . . . . . . . . 12 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑𝑐)
3326, 32eqsstrrd 3982 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑐)
34 unss1 4148 . . . . . . . . . . 11 ((𝑒𝐴) ⊆ 𝑐 → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3630, 35eqsstrrid 3986 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))
37 sseq2 3973 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝐵𝑏𝐵𝑒))
38 sseq1 3972 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)) ↔ 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴))))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑒 → ((𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))) ↔ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))))
4039rspcev 3588 . . . . . . . . 9 ((𝑒𝐽 ∧ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
4119, 29, 36, 40syl12anc 836 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
42 indir 4249 . . . . . . . . . . 11 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴))
43 disjdifr 4436 . . . . . . . . . . . 12 ((𝑒𝐴) ∩ 𝐴) = ∅
4443uneq2i 4128 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴)) = ((𝑐𝐴) ∪ ∅)
45 un0 4357 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ∅) = (𝑐𝐴)
4642, 44, 453eqtri 2756 . . . . . . . . . 10 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = (𝑐𝐴)
47 dfss2 3932 . . . . . . . . . . 11 (𝑐𝐴 ↔ (𝑐𝐴) = 𝑐)
4847biimpi 216 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴) = 𝑐)
4946, 48eqtr2id 2777 . . . . . . . . 9 (𝑐𝐴𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
5015, 49syl 17 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
51 vex 3451 . . . . . . . . . 10 𝑐 ∈ V
52 vex 3451 . . . . . . . . . . 11 𝑒 ∈ V
5352difexi 5285 . . . . . . . . . 10 (𝑒𝐴) ∈ V
5451, 53unex 7720 . . . . . . . . 9 (𝑐 ∪ (𝑒𝐴)) ∈ V
55 sseq1 3972 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝑋 ↔ (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋))
56 sseq2 3973 . . . . . . . . . . . . 13 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑏𝑎𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
5756anbi2d 630 . . . . . . . . . . . 12 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝐵𝑏𝑏𝑎) ↔ (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5857rexbidv 3157 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) ↔ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5955, 58anbi12d 632 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ↔ ((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))))
60 ineq1 4176 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝐴) = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
6160eqeq2d 2740 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑐 = (𝑎𝐴) ↔ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)))
6259, 61anbi12d 632 . . . . . . . . 9 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) ↔ (((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))))
6354, 62spcev 3572 . . . . . . . 8 ((((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
6423, 41, 50, 63syl21anc 837 . . . . . . 7 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
659ad3antrrr 730 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐽 ∈ Top)
669uniexd 7718 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ V)
6711, 66eqeltrid 2832 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝑋 ∈ V)
6867, 10ssexd 5279 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 ∈ V)
6968ad3antrrr 730 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐴 ∈ V)
70 simplr 768 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝑑 ∈ (𝐽t 𝐴))
71 elrest 17390 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑑 ∈ (𝐽t 𝐴) ↔ ∃𝑒𝐽 𝑑 = (𝑒𝐴)))
7271biimpa 476 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 ∈ V) ∧ 𝑑 ∈ (𝐽t 𝐴)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7365, 69, 70, 72syl21anc 837 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7464, 73r19.29a 3141 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
757, 74sylanl1 680 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
76 simprr 772 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
775, 75, 76r19.29af 3246 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
78 inss2 4201 . . . . . . . . . 10 (𝑎𝐴) ⊆ 𝐴
79 sseq1 3972 . . . . . . . . . 10 (𝑐 = (𝑎𝐴) → (𝑐𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
8078, 79mpbiri 258 . . . . . . . . 9 (𝑐 = (𝑎𝐴) → 𝑐𝐴)
8180adantl 481 . . . . . . . 8 (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8281exlimiv 1930 . . . . . . 7 (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8382adantl 481 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐𝐴)
8413adantr 480 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝐴 = (𝐽t 𝐴))
8583, 84sseqtrd 3983 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐 (𝐽t 𝐴))
869ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐽 ∈ Top)
8768ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐴 ∈ V)
88 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝐽)
89 elrestr 17391 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏𝐽) → (𝑏𝐴) ∈ (𝐽t 𝐴))
9086, 87, 88, 89syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ∈ (𝐽t 𝐴))
91 simprl 770 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝑏)
92 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝐴)
9392ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝐴)
9491, 93ssind 4204 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵 ⊆ (𝑏𝐴))
95 simprr 772 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝑎)
9695ssrind 4207 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ (𝑎𝐴))
97 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑐 = (𝑎𝐴))
9896, 97sseqtrrd 3984 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ 𝑐)
9990, 94, 98jca32 515 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
10099ex 412 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) → ((𝐵𝑏𝑏𝑎) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
101100reximdva 3146 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
102101impr 454 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
103102an32s 652 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
104103expl 457 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
105104exlimdv 1933 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
106105imp 406 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
107 sseq2 3973 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝐵𝑑𝐵 ⊆ (𝑏𝐴)))
108 sseq1 3972 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝑑𝑐 ↔ (𝑏𝐴) ⊆ 𝑐))
109107, 108anbi12d 632 . . . . . . . 8 (𝑑 = (𝑏𝐴) → ((𝐵𝑑𝑑𝑐) ↔ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
110109rspcev 3588 . . . . . . 7 (((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
111110rexlimivw 3130 . . . . . 6 (∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
112106, 111syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
11385, 112jca 511 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
11477, 113impbida 800 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
115 resttop 23047 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
1169, 68, 115syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝐽t 𝐴) ∈ Top)
11792, 13sseqtrd 3983 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵 (𝐽t 𝐴))
118 eqid 2729 . . . . 5 (𝐽t 𝐴) = (𝐽t 𝐴)
119118isnei 22990 . . . 4 (((𝐽t 𝐴) ∈ Top ∧ 𝐵 (𝐽t 𝐴)) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
120116, 117, 119syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
121 fvex 6871 . . . . . 6 ((nei‘𝐽)‘𝐵) ∈ V
122 restval 17389 . . . . . 6 ((((nei‘𝐽)‘𝐵) ∈ V ∧ 𝐴 ∈ V) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
123121, 68, 122sylancr 587 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
124123eleq2d 2814 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ 𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))))
12592, 10sstrd 3957 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝑋)
126 eqid 2729 . . . . . . . . 9 (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) = (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))
127126elrnmpt 5922 . . . . . . . 8 (𝑐 ∈ V → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴)))
128127elv 3452 . . . . . . 7 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴))
129 df-rex 3054 . . . . . . 7 (∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
130128, 129bitri 275 . . . . . 6 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
13111isnei 22990 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↔ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))))
132131anbi1d 631 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
133132exbidv 1921 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
134130, 133bitrid 283 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
1359, 125, 134syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
136124, 135bitrd 279 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
137114, 120, 1363bitr4d 311 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ 𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴)))
138137eqrdv 2727 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296   cuni 4871  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  neicnei 22984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-nei 22985
This theorem is referenced by:  flfcntr  23930  cnextfres1  23955
  Copyright terms: Public domain W3C validator