MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitr Structured version   Visualization version   GIF version

Theorem neitr 21791
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
neitr.1 𝑋 = 𝐽
Assertion
Ref Expression
neitr ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))

Proof of Theorem neitr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑑(𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴)
2 nfv 1914 . . . . . . 7 𝑑 𝑐 (𝐽t 𝐴)
3 nfre1 3309 . . . . . . 7 𝑑𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)
42, 3nfan 1899 . . . . . 6 𝑑(𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
51, 4nfan 1899 . . . . 5 𝑑((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
6 simpl 485 . . . . . . 7 ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) → 𝑐 (𝐽t 𝐴))
76anim2i 618 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)))
8 simp-5r 784 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 (𝐽t 𝐴))
9 simp1 1132 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ Top)
10 simp2 1133 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴𝑋)
11 neitr.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
1211restuni 21773 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
139, 10, 12syl2anc 586 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 = (𝐽t 𝐴))
1413ad5antr 732 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴 = (𝐽t 𝐴))
158, 14sseqtrrd 4011 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝐴)
1610ad5antr 732 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴𝑋)
1715, 16sstrd 3980 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝑋)
189ad5antr 732 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐽 ∈ Top)
19 simplr 767 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝐽)
2011eltopss 21518 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑒𝐽) → 𝑒𝑋)
2118, 19, 20syl2anc 586 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝑋)
2221ssdifssd 4122 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑋)
2317, 22unssd 4165 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋)
24 simpr1l 1226 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝐵𝑑)
25243anassrs 1356 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑑)
26 simpr 487 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑 = (𝑒𝐴))
2725, 26sseqtrd 4010 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵 ⊆ (𝑒𝐴))
28 inss1 4208 . . . . . . . . . 10 (𝑒𝐴) ⊆ 𝑒
2927, 28sstrdi 3982 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑒)
30 inundif 4430 . . . . . . . . . 10 ((𝑒𝐴) ∪ (𝑒𝐴)) = 𝑒
31 simpr1r 1227 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝑑𝑐)
32313anassrs 1356 . . . . . . . . . . . 12 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑𝑐)
3326, 32eqsstrrd 4009 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑐)
34 unss1 4158 . . . . . . . . . . 11 ((𝑒𝐴) ⊆ 𝑐 → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3630, 35eqsstrrid 4019 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))
37 sseq2 3996 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝐵𝑏𝐵𝑒))
38 sseq1 3995 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)) ↔ 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴))))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑒 → ((𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))) ↔ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))))
4039rspcev 3626 . . . . . . . . 9 ((𝑒𝐽 ∧ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
4119, 29, 36, 40syl12anc 834 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
42 indir 4255 . . . . . . . . . . 11 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴))
43 incom 4181 . . . . . . . . . . . . 13 (𝐴 ∩ (𝑒𝐴)) = ((𝑒𝐴) ∩ 𝐴)
44 disjdif 4424 . . . . . . . . . . . . 13 (𝐴 ∩ (𝑒𝐴)) = ∅
4543, 44eqtr3i 2849 . . . . . . . . . . . 12 ((𝑒𝐴) ∩ 𝐴) = ∅
4645uneq2i 4139 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴)) = ((𝑐𝐴) ∪ ∅)
47 un0 4347 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ∅) = (𝑐𝐴)
4842, 46, 473eqtri 2851 . . . . . . . . . 10 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = (𝑐𝐴)
49 df-ss 3955 . . . . . . . . . . 11 (𝑐𝐴 ↔ (𝑐𝐴) = 𝑐)
5049biimpi 218 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴) = 𝑐)
5148, 50syl5req 2872 . . . . . . . . 9 (𝑐𝐴𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
5215, 51syl 17 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
53 vex 3500 . . . . . . . . . 10 𝑐 ∈ V
54 vex 3500 . . . . . . . . . . 11 𝑒 ∈ V
5554difexi 5235 . . . . . . . . . 10 (𝑒𝐴) ∈ V
5653, 55unex 7472 . . . . . . . . 9 (𝑐 ∪ (𝑒𝐴)) ∈ V
57 sseq1 3995 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝑋 ↔ (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋))
58 sseq2 3996 . . . . . . . . . . . . 13 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑏𝑎𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
5958anbi2d 630 . . . . . . . . . . . 12 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝐵𝑏𝑏𝑎) ↔ (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
6059rexbidv 3300 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) ↔ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
6157, 60anbi12d 632 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ↔ ((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))))
62 ineq1 4184 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝐴) = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
6362eqeq2d 2835 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑐 = (𝑎𝐴) ↔ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)))
6461, 63anbi12d 632 . . . . . . . . 9 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) ↔ (((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))))
6556, 64spcev 3610 . . . . . . . 8 ((((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
6623, 41, 52, 65syl21anc 835 . . . . . . 7 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
679ad3antrrr 728 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐽 ∈ Top)
689uniexd 7471 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ V)
6911, 68eqeltrid 2920 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝑋 ∈ V)
7069, 10ssexd 5231 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 ∈ V)
7170ad3antrrr 728 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐴 ∈ V)
72 simplr 767 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝑑 ∈ (𝐽t 𝐴))
73 elrest 16704 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑑 ∈ (𝐽t 𝐴) ↔ ∃𝑒𝐽 𝑑 = (𝑒𝐴)))
7473biimpa 479 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 ∈ V) ∧ 𝑑 ∈ (𝐽t 𝐴)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7567, 71, 72, 74syl21anc 835 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7666, 75r19.29a 3292 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
777, 76sylanl1 678 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
78 simprr 771 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
795, 77, 78r19.29af 3334 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
80 inss2 4209 . . . . . . . . . 10 (𝑎𝐴) ⊆ 𝐴
81 sseq1 3995 . . . . . . . . . 10 (𝑐 = (𝑎𝐴) → (𝑐𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
8280, 81mpbiri 260 . . . . . . . . 9 (𝑐 = (𝑎𝐴) → 𝑐𝐴)
8382adantl 484 . . . . . . . 8 (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8483exlimiv 1930 . . . . . . 7 (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8584adantl 484 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐𝐴)
8613adantr 483 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝐴 = (𝐽t 𝐴))
8785, 86sseqtrd 4010 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐 (𝐽t 𝐴))
889ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐽 ∈ Top)
8970ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐴 ∈ V)
90 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝐽)
91 elrestr 16705 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏𝐽) → (𝑏𝐴) ∈ (𝐽t 𝐴))
9288, 89, 90, 91syl3anc 1367 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ∈ (𝐽t 𝐴))
93 simprl 769 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝑏)
94 simp3 1134 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝐴)
9594ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝐴)
9693, 95ssind 4212 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵 ⊆ (𝑏𝐴))
97 simprr 771 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝑎)
9897ssrind 4215 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ (𝑎𝐴))
99 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑐 = (𝑎𝐴))
10098, 99sseqtrrd 4011 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ 𝑐)
10192, 96, 100jca32 518 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
102101ex 415 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) → ((𝐵𝑏𝑏𝑎) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
103102reximdva 3277 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
104103impr 457 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
105104an32s 650 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
106105expl 460 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
107106exlimdv 1933 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
108107imp 409 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
109 sseq2 3996 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝐵𝑑𝐵 ⊆ (𝑏𝐴)))
110 sseq1 3995 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝑑𝑐 ↔ (𝑏𝐴) ⊆ 𝑐))
111109, 110anbi12d 632 . . . . . . . 8 (𝑑 = (𝑏𝐴) → ((𝐵𝑑𝑑𝑐) ↔ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
112111rspcev 3626 . . . . . . 7 (((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
113112rexlimivw 3285 . . . . . 6 (∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
114108, 113syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
11587, 114jca 514 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
11679, 115impbida 799 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
117 resttop 21771 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
1189, 70, 117syl2anc 586 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝐽t 𝐴) ∈ Top)
11994, 13sseqtrd 4010 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵 (𝐽t 𝐴))
120 eqid 2824 . . . . 5 (𝐽t 𝐴) = (𝐽t 𝐴)
121120isnei 21714 . . . 4 (((𝐽t 𝐴) ∈ Top ∧ 𝐵 (𝐽t 𝐴)) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
122118, 119, 121syl2anc 586 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
123 fvex 6686 . . . . . 6 ((nei‘𝐽)‘𝐵) ∈ V
124 restval 16703 . . . . . 6 ((((nei‘𝐽)‘𝐵) ∈ V ∧ 𝐴 ∈ V) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
125123, 70, 124sylancr 589 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
126125eleq2d 2901 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ 𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))))
12794, 10sstrd 3980 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝑋)
128 eqid 2824 . . . . . . . . 9 (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) = (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))
129128elrnmpt 5831 . . . . . . . 8 (𝑐 ∈ V → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴)))
130129elv 3502 . . . . . . 7 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴))
131 df-rex 3147 . . . . . . 7 (∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
132130, 131bitri 277 . . . . . 6 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
13311isnei 21714 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↔ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))))
134133anbi1d 631 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
135134exbidv 1921 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
136132, 135syl5bb 285 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
1379, 127, 136syl2anc 586 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
138126, 137bitrd 281 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
139116, 122, 1383bitr4d 313 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ 𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴)))
140139eqrdv 2822 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wrex 3142  Vcvv 3497  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294   cuni 4841  cmpt 5149  ran crn 5559  cfv 6358  (class class class)co 7159  t crest 16697  Topctop 21504  neicnei 21708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109  df-er 8292  df-en 8513  df-fin 8516  df-fi 8878  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-nei 21709
This theorem is referenced by:  flfcntr  22654  cnextfres1  22679
  Copyright terms: Public domain W3C validator