MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitr Structured version   Visualization version   GIF version

Theorem neitr 23209
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
neitr.1 𝑋 = 𝐽
Assertion
Ref Expression
neitr ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))

Proof of Theorem neitr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . . 6 𝑑(𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴)
2 nfv 1913 . . . . . . 7 𝑑 𝑐 (𝐽t 𝐴)
3 nfre1 3291 . . . . . . 7 𝑑𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)
42, 3nfan 1898 . . . . . 6 𝑑(𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
51, 4nfan 1898 . . . . 5 𝑑((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
6 simpl 482 . . . . . . 7 ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) → 𝑐 (𝐽t 𝐴))
76anim2i 616 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)))
8 simp-5r 785 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 (𝐽t 𝐴))
9 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ Top)
10 simp2 1137 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴𝑋)
11 neitr.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
1211restuni 23191 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
139, 10, 12syl2anc 583 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 = (𝐽t 𝐴))
1413ad5antr 733 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴 = (𝐽t 𝐴))
158, 14sseqtrrd 4050 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝐴)
1610ad5antr 733 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴𝑋)
1715, 16sstrd 4019 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝑋)
189ad5antr 733 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐽 ∈ Top)
19 simplr 768 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝐽)
2011eltopss 22934 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑒𝐽) → 𝑒𝑋)
2118, 19, 20syl2anc 583 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝑋)
2221ssdifssd 4170 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑋)
2317, 22unssd 4215 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋)
24 simpr1l 1230 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝐵𝑑)
25243anassrs 1360 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑑)
26 simpr 484 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑 = (𝑒𝐴))
2725, 26sseqtrd 4049 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵 ⊆ (𝑒𝐴))
28 inss1 4258 . . . . . . . . . 10 (𝑒𝐴) ⊆ 𝑒
2927, 28sstrdi 4021 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑒)
30 inundif 4502 . . . . . . . . . 10 ((𝑒𝐴) ∪ (𝑒𝐴)) = 𝑒
31 simpr1r 1231 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝑑𝑐)
32313anassrs 1360 . . . . . . . . . . . 12 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑𝑐)
3326, 32eqsstrrd 4048 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑐)
34 unss1 4208 . . . . . . . . . . 11 ((𝑒𝐴) ⊆ 𝑐 → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3630, 35eqsstrrid 4058 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))
37 sseq2 4035 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝐵𝑏𝐵𝑒))
38 sseq1 4034 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)) ↔ 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴))))
3937, 38anbi12d 631 . . . . . . . . . 10 (𝑏 = 𝑒 → ((𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))) ↔ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))))
4039rspcev 3635 . . . . . . . . 9 ((𝑒𝐽 ∧ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
4119, 29, 36, 40syl12anc 836 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
42 indir 4305 . . . . . . . . . . 11 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴))
43 disjdifr 4496 . . . . . . . . . . . 12 ((𝑒𝐴) ∩ 𝐴) = ∅
4443uneq2i 4188 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴)) = ((𝑐𝐴) ∪ ∅)
45 un0 4417 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ∅) = (𝑐𝐴)
4642, 44, 453eqtri 2772 . . . . . . . . . 10 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = (𝑐𝐴)
47 dfss2 3994 . . . . . . . . . . 11 (𝑐𝐴 ↔ (𝑐𝐴) = 𝑐)
4847biimpi 216 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴) = 𝑐)
4946, 48eqtr2id 2793 . . . . . . . . 9 (𝑐𝐴𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
5015, 49syl 17 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
51 vex 3492 . . . . . . . . . 10 𝑐 ∈ V
52 vex 3492 . . . . . . . . . . 11 𝑒 ∈ V
5352difexi 5348 . . . . . . . . . 10 (𝑒𝐴) ∈ V
5451, 53unex 7779 . . . . . . . . 9 (𝑐 ∪ (𝑒𝐴)) ∈ V
55 sseq1 4034 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝑋 ↔ (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋))
56 sseq2 4035 . . . . . . . . . . . . 13 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑏𝑎𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
5756anbi2d 629 . . . . . . . . . . . 12 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝐵𝑏𝑏𝑎) ↔ (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5857rexbidv 3185 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) ↔ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5955, 58anbi12d 631 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ↔ ((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))))
60 ineq1 4234 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝐴) = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
6160eqeq2d 2751 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑐 = (𝑎𝐴) ↔ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)))
6259, 61anbi12d 631 . . . . . . . . 9 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) ↔ (((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))))
6354, 62spcev 3619 . . . . . . . 8 ((((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
6423, 41, 50, 63syl21anc 837 . . . . . . 7 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
659ad3antrrr 729 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐽 ∈ Top)
669uniexd 7777 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ V)
6711, 66eqeltrid 2848 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝑋 ∈ V)
6867, 10ssexd 5342 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 ∈ V)
6968ad3antrrr 729 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐴 ∈ V)
70 simplr 768 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝑑 ∈ (𝐽t 𝐴))
71 elrest 17487 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑑 ∈ (𝐽t 𝐴) ↔ ∃𝑒𝐽 𝑑 = (𝑒𝐴)))
7271biimpa 476 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 ∈ V) ∧ 𝑑 ∈ (𝐽t 𝐴)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7365, 69, 70, 72syl21anc 837 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7464, 73r19.29a 3168 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
757, 74sylanl1 679 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
76 simprr 772 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
775, 75, 76r19.29af 3274 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
78 inss2 4259 . . . . . . . . . 10 (𝑎𝐴) ⊆ 𝐴
79 sseq1 4034 . . . . . . . . . 10 (𝑐 = (𝑎𝐴) → (𝑐𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
8078, 79mpbiri 258 . . . . . . . . 9 (𝑐 = (𝑎𝐴) → 𝑐𝐴)
8180adantl 481 . . . . . . . 8 (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8281exlimiv 1929 . . . . . . 7 (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8382adantl 481 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐𝐴)
8413adantr 480 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝐴 = (𝐽t 𝐴))
8583, 84sseqtrd 4049 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐 (𝐽t 𝐴))
869ad4antr 731 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐽 ∈ Top)
8768ad4antr 731 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐴 ∈ V)
88 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝐽)
89 elrestr 17488 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏𝐽) → (𝑏𝐴) ∈ (𝐽t 𝐴))
9086, 87, 88, 89syl3anc 1371 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ∈ (𝐽t 𝐴))
91 simprl 770 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝑏)
92 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝐴)
9392ad4antr 731 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝐴)
9491, 93ssind 4262 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵 ⊆ (𝑏𝐴))
95 simprr 772 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝑎)
9695ssrind 4265 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ (𝑎𝐴))
97 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑐 = (𝑎𝐴))
9896, 97sseqtrrd 4050 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ 𝑐)
9990, 94, 98jca32 515 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
10099ex 412 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) → ((𝐵𝑏𝑏𝑎) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
101100reximdva 3174 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
102101impr 454 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
103102an32s 651 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
104103expl 457 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
105104exlimdv 1932 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
106105imp 406 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
107 sseq2 4035 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝐵𝑑𝐵 ⊆ (𝑏𝐴)))
108 sseq1 4034 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝑑𝑐 ↔ (𝑏𝐴) ⊆ 𝑐))
109107, 108anbi12d 631 . . . . . . . 8 (𝑑 = (𝑏𝐴) → ((𝐵𝑑𝑑𝑐) ↔ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
110109rspcev 3635 . . . . . . 7 (((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
111110rexlimivw 3157 . . . . . 6 (∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
112106, 111syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
11385, 112jca 511 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
11477, 113impbida 800 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
115 resttop 23189 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
1169, 68, 115syl2anc 583 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝐽t 𝐴) ∈ Top)
11792, 13sseqtrd 4049 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵 (𝐽t 𝐴))
118 eqid 2740 . . . . 5 (𝐽t 𝐴) = (𝐽t 𝐴)
119118isnei 23132 . . . 4 (((𝐽t 𝐴) ∈ Top ∧ 𝐵 (𝐽t 𝐴)) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
120116, 117, 119syl2anc 583 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
121 fvex 6933 . . . . . 6 ((nei‘𝐽)‘𝐵) ∈ V
122 restval 17486 . . . . . 6 ((((nei‘𝐽)‘𝐵) ∈ V ∧ 𝐴 ∈ V) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
123121, 68, 122sylancr 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
124123eleq2d 2830 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ 𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))))
12592, 10sstrd 4019 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝑋)
126 eqid 2740 . . . . . . . . 9 (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) = (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))
127126elrnmpt 5981 . . . . . . . 8 (𝑐 ∈ V → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴)))
128127elv 3493 . . . . . . 7 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴))
129 df-rex 3077 . . . . . . 7 (∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
130128, 129bitri 275 . . . . . 6 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
13111isnei 23132 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↔ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))))
132131anbi1d 630 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
133132exbidv 1920 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
134130, 133bitrid 283 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
1359, 125, 134syl2anc 583 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
136124, 135bitrd 279 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
137114, 120, 1363bitr4d 311 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ 𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴)))
138137eqrdv 2738 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352   cuni 4931  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-nei 23127
This theorem is referenced by:  flfcntr  24072  cnextfres1  24097
  Copyright terms: Public domain W3C validator