MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitr Structured version   Visualization version   GIF version

Theorem neitr 23096
Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
neitr.1 𝑋 = 𝐽
Assertion
Ref Expression
neitr ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))

Proof of Theorem neitr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . 6 𝑑(𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴)
2 nfv 1915 . . . . . . 7 𝑑 𝑐 (𝐽t 𝐴)
3 nfre1 3258 . . . . . . 7 𝑑𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)
42, 3nfan 1900 . . . . . 6 𝑑(𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
51, 4nfan 1900 . . . . 5 𝑑((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
6 simpl 482 . . . . . . 7 ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) → 𝑐 (𝐽t 𝐴))
76anim2i 617 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)))
8 simp-5r 785 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 (𝐽t 𝐴))
9 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ Top)
10 simp2 1137 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴𝑋)
11 neitr.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
1211restuni 23078 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
139, 10, 12syl2anc 584 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 = (𝐽t 𝐴))
1413ad5antr 734 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴 = (𝐽t 𝐴))
158, 14sseqtrrd 3968 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝐴)
1610ad5antr 734 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐴𝑋)
1715, 16sstrd 3941 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐𝑋)
189ad5antr 734 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐽 ∈ Top)
19 simplr 768 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝐽)
2011eltopss 22823 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑒𝐽) → 𝑒𝑋)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒𝑋)
2221ssdifssd 4096 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑋)
2317, 22unssd 4141 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋)
24 simpr1l 1231 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝐵𝑑)
25243anassrs 1361 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑑)
26 simpr 484 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑 = (𝑒𝐴))
2725, 26sseqtrd 3967 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵 ⊆ (𝑒𝐴))
28 inss1 4186 . . . . . . . . . 10 (𝑒𝐴) ⊆ 𝑒
2927, 28sstrdi 3943 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝐵𝑒)
30 inundif 4428 . . . . . . . . . 10 ((𝑒𝐴) ∪ (𝑒𝐴)) = 𝑒
31 simpr1r 1232 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ ((𝐵𝑑𝑑𝑐) ∧ 𝑒𝐽𝑑 = (𝑒𝐴))) → 𝑑𝑐)
32313anassrs 1361 . . . . . . . . . . . 12 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑑𝑐)
3326, 32eqsstrrd 3966 . . . . . . . . . . 11 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → (𝑒𝐴) ⊆ 𝑐)
34 unss1 4134 . . . . . . . . . . 11 ((𝑒𝐴) ⊆ 𝑐 → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ((𝑒𝐴) ∪ (𝑒𝐴)) ⊆ (𝑐 ∪ (𝑒𝐴)))
3630, 35eqsstrrid 3970 . . . . . . . . 9 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))
37 sseq2 3957 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝐵𝑏𝐵𝑒))
38 sseq1 3956 . . . . . . . . . . 11 (𝑏 = 𝑒 → (𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)) ↔ 𝑒 ⊆ (𝑐 ∪ (𝑒𝐴))))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑒 → ((𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))) ↔ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))))
4039rspcev 3573 . . . . . . . . 9 ((𝑒𝐽 ∧ (𝐵𝑒𝑒 ⊆ (𝑐 ∪ (𝑒𝐴)))) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
4119, 29, 36, 40syl12anc 836 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
42 indir 4235 . . . . . . . . . . 11 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴))
43 disjdifr 4422 . . . . . . . . . . . 12 ((𝑒𝐴) ∩ 𝐴) = ∅
4443uneq2i 4114 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ((𝑒𝐴) ∩ 𝐴)) = ((𝑐𝐴) ∪ ∅)
45 un0 4343 . . . . . . . . . . 11 ((𝑐𝐴) ∪ ∅) = (𝑐𝐴)
4642, 44, 453eqtri 2760 . . . . . . . . . 10 ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴) = (𝑐𝐴)
47 dfss2 3916 . . . . . . . . . . 11 (𝑐𝐴 ↔ (𝑐𝐴) = 𝑐)
4847biimpi 216 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴) = 𝑐)
4946, 48eqtr2id 2781 . . . . . . . . 9 (𝑐𝐴𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
5015, 49syl 17 . . . . . . . 8 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
51 vex 3441 . . . . . . . . . 10 𝑐 ∈ V
52 vex 3441 . . . . . . . . . . 11 𝑒 ∈ V
5352difexi 5270 . . . . . . . . . 10 (𝑒𝐴) ∈ V
5451, 53unex 7683 . . . . . . . . 9 (𝑐 ∪ (𝑒𝐴)) ∈ V
55 sseq1 3956 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝑋 ↔ (𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋))
56 sseq2 3957 . . . . . . . . . . . . 13 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑏𝑎𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))
5756anbi2d 630 . . . . . . . . . . . 12 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝐵𝑏𝑏𝑎) ↔ (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5857rexbidv 3157 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) ↔ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))))
5955, 58anbi12d 632 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ↔ ((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴))))))
60 ineq1 4162 . . . . . . . . . . 11 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑎𝐴) = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))
6160eqeq2d 2744 . . . . . . . . . 10 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (𝑐 = (𝑎𝐴) ↔ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)))
6259, 61anbi12d 632 . . . . . . . . 9 (𝑎 = (𝑐 ∪ (𝑒𝐴)) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) ↔ (((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴))))
6354, 62spcev 3557 . . . . . . . 8 ((((𝑐 ∪ (𝑒𝐴)) ⊆ 𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏 ⊆ (𝑐 ∪ (𝑒𝐴)))) ∧ 𝑐 = ((𝑐 ∪ (𝑒𝐴)) ∩ 𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
6423, 41, 50, 63syl21anc 837 . . . . . . 7 (((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) ∧ 𝑒𝐽) ∧ 𝑑 = (𝑒𝐴)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
659ad3antrrr 730 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐽 ∈ Top)
669uniexd 7681 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐽 ∈ V)
6711, 66eqeltrid 2837 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝑋 ∈ V)
6867, 10ssexd 5264 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐴 ∈ V)
6968ad3antrrr 730 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝐴 ∈ V)
70 simplr 768 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → 𝑑 ∈ (𝐽t 𝐴))
71 elrest 17333 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑑 ∈ (𝐽t 𝐴) ↔ ∃𝑒𝐽 𝑑 = (𝑒𝐴)))
7271biimpa 476 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 ∈ V) ∧ 𝑑 ∈ (𝐽t 𝐴)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7365, 69, 70, 72syl21anc 837 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑒𝐽 𝑑 = (𝑒𝐴))
7464, 73r19.29a 3141 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 (𝐽t 𝐴)) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
757, 74sylanl1 680 . . . . 5 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) ∧ 𝑑 ∈ (𝐽t 𝐴)) ∧ (𝐵𝑑𝑑𝑐)) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
76 simprr 772 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
775, 75, 76r19.29af 3242 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))) → ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)))
78 inss2 4187 . . . . . . . . . 10 (𝑎𝐴) ⊆ 𝐴
79 sseq1 3956 . . . . . . . . . 10 (𝑐 = (𝑎𝐴) → (𝑐𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
8078, 79mpbiri 258 . . . . . . . . 9 (𝑐 = (𝑎𝐴) → 𝑐𝐴)
8180adantl 481 . . . . . . . 8 (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8281exlimiv 1931 . . . . . . 7 (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → 𝑐𝐴)
8382adantl 481 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐𝐴)
8413adantr 480 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝐴 = (𝐽t 𝐴))
8583, 84sseqtrd 3967 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → 𝑐 (𝐽t 𝐴))
869ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐽 ∈ Top)
8768ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐴 ∈ V)
88 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝐽)
89 elrestr 17334 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏𝐽) → (𝑏𝐴) ∈ (𝐽t 𝐴))
9086, 87, 88, 89syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ∈ (𝐽t 𝐴))
91 simprl 770 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝑏)
92 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝐴)
9392ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵𝐴)
9491, 93ssind 4190 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝐵 ⊆ (𝑏𝐴))
95 simprr 772 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑏𝑎)
9695ssrind 4193 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ (𝑎𝐴))
97 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → 𝑐 = (𝑎𝐴))
9896, 97sseqtrrd 3968 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → (𝑏𝐴) ⊆ 𝑐)
9990, 94, 98jca32 515 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) ∧ (𝐵𝑏𝑏𝑎)) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
10099ex 412 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) ∧ 𝑏𝐽) → ((𝐵𝑏𝑏𝑎) → ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
101100reximdva 3146 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ 𝑎𝑋) → (∃𝑏𝐽 (𝐵𝑏𝑏𝑎) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
102101impr 454 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ 𝑐 = (𝑎𝐴)) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
103102an32s 652 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
104103expl 457 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
105104exlimdv 1934 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴)) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐))))
106105imp 406 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
107 sseq2 3957 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝐵𝑑𝐵 ⊆ (𝑏𝐴)))
108 sseq1 3956 . . . . . . . . 9 (𝑑 = (𝑏𝐴) → (𝑑𝑐 ↔ (𝑏𝐴) ⊆ 𝑐))
109107, 108anbi12d 632 . . . . . . . 8 (𝑑 = (𝑏𝐴) → ((𝐵𝑑𝑑𝑐) ↔ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)))
110109rspcev 3573 . . . . . . 7 (((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
111110rexlimivw 3130 . . . . . 6 (∃𝑏𝐽 ((𝑏𝐴) ∈ (𝐽t 𝐴) ∧ (𝐵 ⊆ (𝑏𝐴) ∧ (𝑏𝐴) ⊆ 𝑐)) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
112106, 111syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))
11385, 112jca 511 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) ∧ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))) → (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)))
11477, 113impbida 800 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
115 resttop 23076 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
1169, 68, 115syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝐽t 𝐴) ∈ Top)
11792, 13sseqtrd 3967 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵 (𝐽t 𝐴))
118 eqid 2733 . . . . 5 (𝐽t 𝐴) = (𝐽t 𝐴)
119118isnei 23019 . . . 4 (((𝐽t 𝐴) ∈ Top ∧ 𝐵 (𝐽t 𝐴)) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
120116, 117, 119syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ (𝑐 (𝐽t 𝐴) ∧ ∃𝑑 ∈ (𝐽t 𝐴)(𝐵𝑑𝑑𝑐))))
121 fvex 6841 . . . . . 6 ((nei‘𝐽)‘𝐵) ∈ V
122 restval 17332 . . . . . 6 ((((nei‘𝐽)‘𝐵) ∈ V ∧ 𝐴 ∈ V) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
123121, 68, 122sylancr 587 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (((nei‘𝐽)‘𝐵) ↾t 𝐴) = ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)))
124123eleq2d 2819 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ 𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))))
12592, 10sstrd 3941 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → 𝐵𝑋)
126 eqid 2733 . . . . . . . . 9 (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) = (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴))
127126elrnmpt 5902 . . . . . . . 8 (𝑐 ∈ V → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴)))
128127elv 3442 . . . . . . 7 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴))
129 df-rex 3058 . . . . . . 7 (∃𝑎 ∈ ((nei‘𝐽)‘𝐵)𝑐 = (𝑎𝐴) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
130128, 129bitri 275 . . . . . 6 (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)))
13111isnei 23019 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↔ (𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎))))
132131anbi1d 631 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
133132exbidv 1922 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (∃𝑎(𝑎 ∈ ((nei‘𝐽)‘𝐵) ∧ 𝑐 = (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
134130, 133bitrid 283 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
1359, 125, 134syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ran (𝑎 ∈ ((nei‘𝐽)‘𝐵) ↦ (𝑎𝐴)) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
136124, 135bitrd 279 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴) ↔ ∃𝑎((𝑎𝑋 ∧ ∃𝑏𝐽 (𝐵𝑏𝑏𝑎)) ∧ 𝑐 = (𝑎𝐴))))
137114, 120, 1363bitr4d 311 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → (𝑐 ∈ ((nei‘(𝐽t 𝐴))‘𝐵) ↔ 𝑐 ∈ (((nei‘𝐽)‘𝐵) ↾t 𝐴)))
138137eqrdv 2731 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   cuni 4858  cmpt 5174  ran crn 5620  cfv 6486  (class class class)co 7352  t crest 17326  Topctop 22809  neicnei 23013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-en 8876  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-nei 23014
This theorem is referenced by:  flfcntr  23959  cnextfres1  23984
  Copyright terms: Public domain W3C validator