![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncld | Structured version Visualization version GIF version |
Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opncld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 478 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | eltopss 21037 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
4 | 2 | isopn2 21162 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
5 | 3, 4 | syldan 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
6 | 1, 5 | mpbid 224 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∖ cdif 3764 ⊆ wss 3767 ∪ cuni 4626 ‘cfv 6099 Topctop 21023 Clsdccld 21146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-iota 6062 df-fun 6101 df-fv 6107 df-top 21024 df-cld 21149 |
This theorem is referenced by: iincld 21169 iuncld 21175 clsval2 21180 cmntrcld 21193 elcls 21203 opncldf1 21214 opncldf2 21215 restcld 21302 iscncl 21399 pnrmopn 21473 isnrm2 21488 isnrm3 21489 isreg2 21507 hauscmplem 21535 conndisj 21545 hausllycmp 21623 1stckgen 21683 txkgen 21781 qtoprest 21846 qtopcmap 21848 icopnfcld 22896 lebnumlem1 23085 bcth3 23454 sxbrsigalem3 30842 pconnconn 31722 cvmscld 31764 cldbnd 32825 mblfinlem3 33929 mblfinlem4 33930 |
Copyright terms: Public domain | W3C validator |