MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncld Structured version   Visualization version   GIF version

Theorem opncld 22856
Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
opncld ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))

Proof of Theorem opncld
StepHypRef Expression
1 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝐽)
2 iscld.1 . . . 4 𝑋 = 𝐽
32eltopss 22728 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
42isopn2 22855 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
53, 4syldan 590 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
61, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  cdif 3945  wss 3948   cuni 4908  cfv 6543  Topctop 22714  Clsdccld 22839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22715  df-cld 22842
This theorem is referenced by:  iincld  22862  iuncld  22868  clsval2  22873  cmntrcld  22886  elcls  22896  opncldf1  22907  opncldf2  22908  restcld  22995  iscncl  23092  pnrmopn  23166  isnrm2  23181  isnrm3  23182  isreg2  23200  hauscmplem  23229  conndisj  23239  hausllycmp  23317  1stckgen  23377  txkgen  23475  qtoprest  23540  qtopcmap  23542  icopnfcld  24603  lebnumlem1  24806  bcth3  25178  sxbrsigalem3  33734  pconnconn  34685  cvmscld  34727  cldbnd  35674  mblfinlem3  36990  mblfinlem4  36991  opncldeqv  47695  seposep  47719
  Copyright terms: Public domain W3C validator