MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncld Structured version   Visualization version   GIF version

Theorem opncld 22536
Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
opncld ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))

Proof of Theorem opncld
StepHypRef Expression
1 simpr 485 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝐽)
2 iscld.1 . . . 4 𝑋 = 𝐽
32eltopss 22408 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
42isopn2 22535 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
53, 4syldan 591 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
61, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cdif 3945  wss 3948   cuni 4908  cfv 6543  Topctop 22394  Clsdccld 22519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22395  df-cld 22522
This theorem is referenced by:  iincld  22542  iuncld  22548  clsval2  22553  cmntrcld  22566  elcls  22576  opncldf1  22587  opncldf2  22588  restcld  22675  iscncl  22772  pnrmopn  22846  isnrm2  22861  isnrm3  22862  isreg2  22880  hauscmplem  22909  conndisj  22919  hausllycmp  22997  1stckgen  23057  txkgen  23155  qtoprest  23220  qtopcmap  23222  icopnfcld  24283  lebnumlem1  24476  bcth3  24847  sxbrsigalem3  33266  pconnconn  34217  cvmscld  34259  cldbnd  35206  mblfinlem3  36522  mblfinlem4  36523  opncldeqv  47524  seposep  47548
  Copyright terms: Public domain W3C validator