MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncld Structured version   Visualization version   GIF version

Theorem opncld 22092
Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
opncld ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))

Proof of Theorem opncld
StepHypRef Expression
1 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝐽)
2 iscld.1 . . . 4 𝑋 = 𝐽
32eltopss 21964 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
42isopn2 22091 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
53, 4syldan 590 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
61, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑋𝑆) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-top 21951  df-cld 22078
This theorem is referenced by:  iincld  22098  iuncld  22104  clsval2  22109  cmntrcld  22122  elcls  22132  opncldf1  22143  opncldf2  22144  restcld  22231  iscncl  22328  pnrmopn  22402  isnrm2  22417  isnrm3  22418  isreg2  22436  hauscmplem  22465  conndisj  22475  hausllycmp  22553  1stckgen  22613  txkgen  22711  qtoprest  22776  qtopcmap  22778  icopnfcld  23837  lebnumlem1  24030  bcth3  24400  sxbrsigalem3  32139  pconnconn  33093  cvmscld  33135  cldbnd  34442  mblfinlem3  35743  mblfinlem4  35744  opncldeqv  46083  seposep  46107
  Copyright terms: Public domain W3C validator